Solveeit Logo

Question

Mathematics Question on Vectors

If ab=1,bc=2and\vec{a}⋅\vec{b}=1,\vec{b}⋅\vec{c}=2 and ca=3,\vec{c}⋅\vec{a}=3,
then the value of
[[a×(b×c),b×(c×a),c×(b×a)][\vec{a}×(\vec{b}×\vec{c}),\vec{b}×(\vec{c}×\vec{a}),\vec{c}×(\vec{b}×\vec{a})]
is

A

0

B

6a×(b×c)-6\vec{a}⋅×(\vec{b}×\vec{c})

C

12c×(a×b)12\vec{c}⋅×(\vec{a}×\vec{b})

D

12b×(c×a)-12\vec{b}⋅×(\vec{c}×\vec{a})

Answer

0

Explanation

Solution

The correct answer is (A) : 0
a×(b×c)=3bc=u∵\vec{a}×(\vec{b}×\vec{c})=3\vec{b}−\vec{c}=\vec{u}
b×(c×a)=c2a=v\vec{b}×(\vec{c}×\vec{a})=\vec{c}−2\vec{a}=\vec{v}
c×(b×a)=3b2a=w\vec{c}×(\vec{b}×\vec{a})=3\vec{b}−2\vec{a}=\vec{w}
u+v=w\vec{u}+\vec{v}=\vec{w}
So vectors u,vand\vec{u},\vec{v} and w\vec{w} are coplanar, hence their Scalar triple product will be zero.