Solveeit Logo

Question

Mathematics Question on Vector Algebra

If (a×b)2+(a.b)2=144(\vec{a} \times \vec{b})^2+(\vec{a}.\vec{b})^2=144 and a|\vec{a}| then b |\vec{b}|=

A

16

B

8

C

3

D

12

Answer

3

Explanation

Solution

The correct answer is C:3
Given, (a×b)2+(a.b)2=144\left(a \times b\right)^{2} + \left(a.b\right)^{2} = 144
a=4,b=?|a|=4, |b|=?
Let us consider the angle between a\vec{a} and b\vec{b} is θ\theta then;
a2b2sin2θ+a2b2.cos2θ=144|\vec{a}|^2|\vec{b}|^2sin^2\theta+|\vec{a}|^2|\vec{b}|^2.cos^2\theta=144
a2b2=144(sin2θ+cos2θ=1)|\vec{a}|^2|\vec{b}|^2=144 (sin^2\theta+cos^2\theta=1)
4b2=1444|\vec{b}|^2=144
b2=1444|\vec{b}|^2=\frac{144}{4}
b=124|\vec{b}|=\frac{12}{4}
b=3|b|=3
vector