Question
Mathematics Question on Vector Algebra
If (a×b)2+(a.b)2=144 and ∣a∣ then ∣b∣=
A
16
B
8
C
3
D
12
Answer
3
Explanation
Solution
The correct answer is C:3
Given, (a×b)2+(a.b)2=144
∣a∣=4,∣b∣=?
Let us consider the angle between a and b is θ then;
∣a∣2∣b∣2sin2θ+∣a∣2∣b∣2.cos2θ=144
⇒∣a∣2∣b∣2=144(sin2θ+cos2θ=1)
⇒4∣b∣2=144
⇒∣b∣2=4144
⇒∣b∣=412
⇒∣b∣=3