Solveeit Logo

Question

Question: If \(\vec { a }\) , <img src="https://cdn.pureessence.tech/canvas_252.png?top_left_x=1349&top_left_...

If a\vec { a } , , represents adjacent edges of tetrahedron such that | a\vec { a } | = || = || = 2 and angle between a\vec { a } and is p/3, and is p/3 and a\vec { a } andp/3 then its volume is

A

4 2\sqrt { 2 }

B

23\sqrt { \frac { 2 } { 3 } }

C

223\frac { 2 \sqrt { 2 } } { \sqrt { 3 } }

D

223\frac { 2 \sqrt { 2 } } { 3 }

Answer

223\frac { 2 \sqrt { 2 } } { 3 }

Explanation

Solution

Let = l ( a\vec { a } +) + m ( a\vec { a } +)

taking dot product with a\vec { a } , we get

2 = l [4 + 2] ̃ l = 13\frac { 1 } { 3 }

squaring 4 = l2 [4 + 4 + 4] = m2. 12

̃ m2 = 29\frac { 2 } { 9 }

̃ taking dot product with ( a\vec { a } × )

[ ( a\vec { a } × ). c\overrightarrow{c}] = m(12)

= 23\frac{\sqrt{2}}{3}× 12 = 42\sqrt{2}

\ volume of tetrahedron is equal to 1/6. 42\sqrt{2}=223\frac{2\sqrt{2}}{3}