Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a=i^+λj^+2k^\vec{a} = \hat{i} + \lambda \hat{j} + 2 \hat{k} and b=μi^+λj^+2k^\vec{b} = \mu \hat{i} + \lambda \hat{j} + 2 \hat{k} are orthogonal and if a=b|\vec{a} | = |\vec{b}|, then (λ,μ)(\lambda, \mu) =

A

(14,94)\left(\frac{1}{4} , - \frac{9}{4}\right)

B

(14,94)\left( - \frac{1}{4} , \frac{9}{4}\right)

C

(74,14)\left(\frac{7}{4} ,\frac{1}{4}\right)

D

(14,74)\left(\frac{1}{4} , \frac{7}{4}\right)

Answer

(14,74)\left(\frac{1}{4} , \frac{7}{4}\right)

Explanation

Solution

The vectors a=i^+λj^+2k^\vec{a} = \hat{i} + \lambda \hat{j} + 2 \hat{k} and b=μi^+λj^+2k^\vec{b} = \mu \hat{i} + \lambda \hat{j} + 2 \hat{k} are orthogonal .
a.b=0\therefore \:\:\: \vec{a} . \vec{b} = 0
μ+λ2=0μ+λ=2\Rightarrow \:\:\: \mu +\lambda - 2 = 0 \:\: \Rightarrow \: \mu + \lambda = 2 ....(i)
Since , a=b|\vec{a} | = | \vec{b}|
1+λ2+4=μ2+1+1λ2+5=μ2+2\therefore\:\:\: \sqrt{1+\lambda^{2}+4} = \sqrt{\mu^{2} +1+1} \Rightarrow \lambda^{2} + 5 = \mu^{2} + 2
λ2+5=(2λ)2+2\Rightarrow \lambda ^{2} + 5 =\left(2 -\lambda\right)^{2} + 2 [using (i)]
λ2+5=4+λ24λ+2\Rightarrow \lambda ^{2} + 5 =4 +\lambda ^{2} - 4\lambda + 2
λ=14\Rightarrow \lambda = \frac{1}{4}
μ=214=74\therefore\:\:\: \mu = 2- \frac{1}{4} = \frac{7}{4} Hence (λ,μ)=(14,74) \left(\lambda,\mu\right) = \left(\frac{1}{4} , \frac{7}{4}\right)