Question
Mathematics Question on Vector Algebra
If a=i^+j^+k^,b=2i^−j^+3k^ and c=i^−2j^+k^,find a unit vector parallel to the vector 2a−b+3c.
Answer
We have,
a=i^+j^+k^,b=2i^−j^+3k^,and c=i^−2j^+k^
2\vec{a}-\vec{b}+3\vec{c}$$=2(\hat{i}+\hat{j}+\hat{k})-(2\hat{i}-\hat{j}+3\hat{k})+3\hat{(i}-2\hat{j}+\hat{k})
=2/hati+2j^+2k^−2i^+j^−3k^+3i^−6j^+3k^
=3i^−3j^+2k^
∣2a−b+3c∣=32+(−3)2+22=9+9+4=22
Hence,the unit vector along 2a−b+3c is
\frac{2\vec{a}-\vec{b}+3\vec{c}}{|2\vec{a}-\vec{b}+3\vec{c}|}$$=\frac{3i^-3\hat{j}+2\hat{k}}{\sqrt{22}}=\frac{3}{\sqrt{22}}\hat{i}-\frac{3}{\sqrt{22}}\hat{j}+\frac{2}{\sqrt{22}}\hat{k}.