Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a=i^+j^+k^,b=2i^j^+3k^\vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=2\hat{i}-\hat{j}+3\hat{k} and c=i^2j^+k^\vec{c}=\hat{i}-2\hat{j}+\hat{k},find a unit vector parallel to the vector 2ab+3c.2\vec{a}-\vec{b}+3\vec{c}.

Answer

We have,
a=i^+j^+k^,b=2i^j^+3k^\vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=2\hat{i}-\hat{j}+3\hat{k},and c=i^2j^+k^\vec{c}=\hat{i}-2\hat{j}+\hat{k}
2\vec{a}-\vec{b}+3\vec{c}$$=2(\hat{i}+\hat{j}+\hat{k})-(2\hat{i}-\hat{j}+3\hat{k})+3\hat{(i}-2\hat{j}+\hat{k})
=2/hati+2j^+2k^2i^+j^3k^+3i^6j^+3k^=2/hat{i}+2\hat{j}+2\hat{k}-2\hat{i}+\hat{j}-3\hat{k}+3\hat{i}-6\hat{j}+3\hat{k}
=3i^3j^+2k^=3\hat{i}-3\hat{j}+2\hat{k}
2ab+3c=32+(3)2+22=9+9+4=22|2\vec{a}-\vec{b}+3\vec{c}|=\sqrt{3^{2}+(-3)^{2}+2^{2}}=\sqrt{9+9+4}=\sqrt{22}
Hence,the unit vector along 2ab+3c2\vec{a}-\vec{b}+3\vec{c} is
\frac{2\vec{a}-\vec{b}+3\vec{c}}{|2\vec{a}-\vec{b}+3\vec{c}|}$$=\frac{3i^-3\hat{j}+2\hat{k}}{\sqrt{22}}=\frac{3}{\sqrt{22}}\hat{i}-\frac{3}{\sqrt{22}}\hat{j}+\frac{2}{\sqrt{22}}\hat{k}.