Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a=i^+j^+k^\vec {a} = \hat {i} + \hat{j} + \hat{k}, b=i+3j+5k^\vec {b} = \vec {i} + 3\vec {j} + 5\hat{k} and c=7i^+9j^+11k^\vec {c} = 7\hat{i} + 9\hat {j} + 11 \hat{k}, then the area of Parallelogram having diagonals a+b\vec{a} +\vec{b} and b+c\vec{b} +\vec{c} is

A

464 \sqrt{6} s units

B

1221\frac{1}{2} \sqrt{21} s units

C

4848

D

6 \sqrt{6} s units

Answer

464 \sqrt{6} s units

Explanation

Solution

a=i+j+k,b=i+3j+5ka = i + j + k, b = i + 3j + 5k
and c=7i+9j+11kc = 7i + 9j + 11k
Let A=a+bA = a + b
=(i+j+k)+(i+3j+5k)= (i + j + k) + (i + 3j + 5k)
=2i+4j+6k= 2i + 4j + 6k
and B=b+cB = b + c
=(i+3j+5k)+(7i+9j+11k)= (i + 3j +5k) + (7i + 9j + 11k)
=8i+12j+16k= 8i + 12j + 16k
\therefore Area of parallelogram
=12A×B= \frac{1}{2}\left|A \times B\right|
(A\because \,\,A and BB are diagonals)
ij;k; 246 81216\begin{vmatrix}i&j;&k;\\\ 2&4&6\\\ 8&12&16\end{vmatrix}
=12i(6472)j(3248)+k(2432)= \frac{1}{2} \left|i\left(64-72\right) - j \left(32 - 48\right) + k \left(24 - 32\right)\right|
=128i+6j8k= \frac{1}{2} \left| - 8i + 6j - 8 k\right|
=(4)2+(8)2+(4)2= \sqrt{\left(-4\right)^{2} + \left(8\right)^{2}+\left(-4\right)^{2}}
=96= \sqrt{96}
=46= 4\sqrt{6} sq units