Solveeit Logo

Question

Mathematics Question on Addition of Vectors

Ifa=i^+2j^+3k^,b=i^+2j^+k^If \, \, \vec{a}=\hat{i}+2\hat{j}+3\hat{k}, \, \vec{b}= \, -\hat{i}+2\hat{j}+\hat{k} and c=3i^+j^\vec{c} \, = \, 3\hat{i}+\hat{j} then t such that a+tb\vec{a}+t\vec{b} is at right angle to c\vec{c} will be equal to

A

5

B

4

C

6

D

2

Answer

5

Explanation

Solution

We have, a+tb=(i^+2j^+3k^)+t(i^+2j^+k^)\vec{a}+t\vec{b}=(\hat{i}+2\hat{j}+3\hat{k}) +t(-\hat{i}+2\hat{j}+\hat{k})
=(1t)i^+(2+2t)j^+(3+t)k^= \, (1-t)\hat{i} + (2+2t)\hat{j}+(3+t)\hat{k}
It is \bot to c= 3i^+j^3\hat{i} + \hat{j}
If 3(1 - t) + (2 + 2t) + (3 + t) (0) = 0
\Rightarrow 3 - 3t + 2 + 2t = 0 \Rightarrow t = 5