Solveeit Logo

Question

Mathematics Question on Vector Algebra

If ab=0\vec{a} \cdot \vec{b}=0 and a+b\vec{a}+\vec{b} makes an angle 6060^{\circ} with a\vec{a} then

A

a=2b|\vec{a}|=2| \vec{b} \mid

B

2a=b2|\vec{a}|=|\vec{b}|

C

a=3b|\vec{a}|=\sqrt{3}| \vec{b} \mid

D

3a=b\sqrt{3}| \vec{a}|=| \vec{b} \mid

Answer

3a=b\sqrt{3}| \vec{a}|=| \vec{b} \mid

Explanation

Solution

cos60=(a+b)aa+ba=a2+0a2+b2=\cos 60=\frac{(\vec{a}+\vec{b}) \cdot \vec{a}}{|\vec{a}+\vec{b}||\vec{a}|}=\frac{|\vec{a}|^{2}+0}{\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}}}= 12=aa2+b2\frac{1}{2}=\frac{|\vec{a}|}{\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}}} a2+b2=4a2|\vec{a}|^{2}+|\vec{b}|^{2}=4|\vec{a}|^{2} b2=3a2|\vec{b}|^{2}=3|\vec{a}|^{2} b=3a|\vec{b}|=\sqrt{3}|\vec{a}|