Question
Physics Question on Vectors
If a and b make an angle cos−1(95) with each other, then ∣a+b∣=2∣a−b∣for ∣a∣=n∣b∣. The integer value of n is _____.
Answer
\cos \theta = \frac{5}{9}$$$$\frac{\vec{a} \cdot \vec{b}}{ab} = \frac{5}{9} \hspace{20pt}(1)
Using ∣a+b∣2=2∣a−b∣2:
a2+b2+2a⋅b=2(a2+b2−2a⋅b)
Simplify:
a2+b2+2a⋅b=2a2+2b2−4a⋅b 6(a⋅b)=a2+b2(2)
Substitute a⋅b=ab⋅95 from (1):
6(95ab)=a2+b2
Assume a=nb: 310ab=a2+b2
310nb2=n2b2+b2
Divide through by b2: 310n=n2+1
Rearrange: 3n2−10n+3=0
Solve using the quadratic formula:
n=2(3)−(−10)±(−10)2−4(3)(3)
n=610±100−36 n=610±8
n=618=3 (only positive integer value).
Final Answer: n=3.