Solveeit Logo

Question

Physics Question on Vectors

If a\vec{a} and b\vec{b} make an angle cos1(59)\cos^{-1}\left(\frac{5}{9}\right) with each other, then a+b=2abfor a=nb.|\vec{a} + \vec{b}| = \sqrt{2} |\vec{a} - \vec{b}| \quad \text{for } |\vec{a}| = n |\vec{b}|. The integer value of nn is _____.

Answer

\cos \theta = \frac{5}{9}$$$$\frac{\vec{a} \cdot \vec{b}}{ab} = \frac{5}{9} \hspace{20pt}(1)

Using a+b2=2ab2|\vec{a} + \vec{b}|^2 = \sqrt{2}|\vec{a} - \vec{b}|^2:
a2+b2+2ab=2(a2+b22ab)a^2 + b^2 + 2a \cdot b = 2(a^2 + b^2 - 2a \cdot b)
Simplify:
a2+b2+2ab=2a2+2b24aba^2 + b^2 + 2a \cdot b = 2a^2 + 2b^2 - 4a \cdot b 6(ab)=a2+b2(2) 6(a \cdot b) = a^2 + b^2 \hspace{20pt}(2)

Substitute ab=ab59\vec{a} \cdot \vec{b} = ab \cdot \frac{5}{9} from (1):
6(59ab)=a2+b26 \left( \frac{5}{9} ab \right) = a^2 + b^2

Assume a=nba = nb: 103ab=a2+b2\frac{10}{3} ab = a^2 + b^2
103nb2=n2b2+b2\frac{10}{3} nb^2 = n^2b^2 + b^2
Divide through by b2b^2: 103n=n2+1\frac{10}{3}n = n^2 + 1
Rearrange: 3n210n+3=03n^2 - 10n + 3 = 0

Solve using the quadratic formula:
n=(10)±(10)24(3)(3)2(3)n = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(3)(3)}}{2(3)}
n=10±100366n = \frac{10 \pm \sqrt{100 - 36}}{6} n=10±86n = \frac{10 \pm 8}{6}
n=186=3n = \frac{18}{6} = 3 (only positive integer value).

Final Answer: n=3n = 3.