Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a\vec{a} and b\vec{b} are unit vectors then what is the angle between a\vec{a} and b\vec{b} for 3ab\sqrt{3} \, \vec{a} - \vec{b} to be unit vector ?

A

3030^\circ

B

4545^\circ

C

6060^\circ

D

9090^\circ

Answer

3030^\circ

Explanation

Solution

Given, a=b=3ab=1| \vec{a} |=| \vec{b} |=|\sqrt{3} \vec{a} - \vec{b} |= 1
3ab2=(3ab)(3ab)\Rightarrow |\sqrt{3} \vec{a}-\vec{b}|^{2}=(\sqrt{3} \vec{a}-\vec{b}) \cdot(\sqrt{3} a-b)
1=3a2+b223abcosθ\Rightarrow 1=3| \vec{a} |^{2}+| \vec{b} |^{2}-2 \sqrt{3}| \vec{a} || \vec{b} | \cos \theta
1=3+123cosθ\Rightarrow 1=3+1-2 \sqrt{3} \cos \,\theta
23cosθ=3\Rightarrow 2 \sqrt{3} \cos\, \theta=3
cosθ=32\Rightarrow \cos \,\theta=\frac{\sqrt{3}}{2}
θ=30\Rightarrow \theta=30^{\circ}