Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a\vec{a} and b\vec{b} are unit vectors enclosing an angle θ\theta and a+b<1 \left| \vec{a} + \vec{b}\right| < 1, then

A

θ=π2\theta = \frac{\pi}{2}

B

θ<π3\theta < \frac{\pi}{3}

C

πθ>2π3\pi \ge \theta > \frac{2\pi}{3}

D

π3<θ<2π3\frac{\pi}{3} < \theta < \frac{2\pi}{3}

Answer

πθ>2π3\pi \ge \theta > \frac{2\pi}{3}

Explanation

Solution

a+b<1\left|\vec{a} + \vec{b}\right| < 1 a+b2<1\Rightarrow \left|\vec{a} + \vec{b}\right|^{2} < 1 a2+b2+2ab<1\Rightarrow \left|\vec{a}\right|^{2} + \left|\vec{b}\right|^{2} + 2\vec{a}\cdot\vec{b} < 1 ab<12\Rightarrow \vec{a}\cdot \vec{b} < -\frac{1}{2} abcosθ<12\Rightarrow \left|\vec{a}\right|\left|\vec{b}\right|cos\,\theta < -\frac{1}{2} 1×1×cosθ<12\Rightarrow 1 \times 1\times cos\,\theta < -\frac{1}{2} cosθ<12\Rightarrow cos\,\theta < -\frac{1}{2} 1cosθ<12\Rightarrow -1 \le cos\,\theta < -\frac{1}{2} πθ>2π3\Rightarrow \pi \ge \theta > \frac{2\pi}{3}