Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a\vec{a} and b\vec{b} are unit vectors and a+b=1|\vec{a} + \vec{b}|=1 then ab|\vec{a} -\vec{b}| is equal to

A

2\sqrt {2}

B

11

C

5\sqrt {5}

D

3\sqrt {3}

Answer

3\sqrt {3}

Explanation

Solution

The correct answer is D:3\sqrt{3}
Given that;
a,b\vec{a},\vec{b} are unit vectors
a+b=a2+b2+2abCosθ=1\therefore |a+b|=\sqrt{|\vec{a^2}|+|\vec{b^2}|+2|a||b|Cos\theta}=1
abCosθ=1112=12|a||b|Cos\theta=\frac{1-1-1}{2}=-\frac{1}{2}
Similarly;
ab=a2+b22abCosθ|\vec{a}-\vec{b}|=\sqrt{|\vec{a^2}|+|\vec{b^2}|-2|\vec{a}||\vec{b}|Cos\theta}
=(a+b)24abCosθ=\sqrt{(|\vec{a}|+|\vec{b}|)^2-4|a||b|Cos\theta}
=124abCosθ=\sqrt{1^2-4|a||b|Cos\theta}
=124(12)=\sqrt{1^2-4(-\frac{1}{2})}
=3=\sqrt{3}
Vector
Vector