Solveeit Logo

Question

Question: If \(\vec{a}\) and \(\vec{b}\) are two vectors then which of the following options is true \[\begi...

If a\vec{a} and b\vec{b} are two vectors then which of the following options is true

& a)|\vec{a}.\vec{b}|>|\vec{a}||\vec{b}| \\\ & b)|\vec{a}.\vec{b}|<|\vec{a}||\vec{b}| \\\ & c)|\vec{a}.\vec{b}|\ge |\vec{a}||\vec{b}| \\\ & d)|\vec{a}.\vec{b}|\le |\vec{a}||\vec{b}| \\\ \end{aligned}$$
Explanation

Solution

We know that a.b=abcosθ\vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta . Hence we can take modulus on both side and find a.b=abcosθ|\vec{a}.\vec{b}|=||\vec{a}||\vec{b}|\cos \theta |. Now we will use the property that a.b=a.b|a.b|=|a|.|b|. Now we also know that the range of cosθ\cos \theta is from -1 to 1. Hence taking mod we can find that cosθ1|\cos \theta |\le 1 . Hence we get relation between a.b|\vec{a}.\vec{b}| and a.b|\vec{a}|.|\vec{b}|

Complete step by step answer:
Now consider a\vec{a} and b\vec{b} are two vectors.
Now we will take a.b\vec{a}.\vec{b} that is nothing but dot product or scalar product of the vectors.
We know that a.b\vec{a}.\vec{b} is given by a.b.cosθ|\vec{a}|.|\vec{b}|.\cos \theta
Note that the value on RHS is a scalar and not a vector
Hence now we have a.b=a.bcosθ\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|\cos \theta
Now taking modulus on both side we get a.b=a.b.cosθ|\vec{a}.\vec{b}|=||\vec{a}|.|\vec{b}|.\cos \theta |
Now we now that for any scalars a and b we get a.b=ab|a.b|=|a||b|.
Now the values a,b,cosθ|\vec{a}|,|\vec{b}|,\cos \theta are all scalar quantities
Hence using the above result we get
a.b=a.b.cosθ|\vec{a}.\vec{b}|=||\vec{a}||.||\vec{b}||.|\cos \theta |
Now we know that a|\vec{a}| is a scalar which is non negative since modulus is nothing but distance and distance is never negative and for any positive scalar we know that a=a|a|=ahence we have a=a||\vec{a}||=|\vec{a}|.
Similarly b|\vec{b}| is a scalar which is non negative since modulus is nothing but distance and distance is never negative and for any positive scalar we know that a=a|a|=ahence we have b=b||\vec{b}||=|\vec{b}|
Hence, we get
a.b=a.b.cosθ................(1)|\vec{a}.\vec{b}|=|\vec{a}|.|\vec{b}|.|\cos \theta |................(1)
Now we know that the range of cosθ\cos \theta is from -1 to 1.
Hence we get 1cosθ1-1\le \cos \theta \le 1
Taking modulus we get 0cosθ10\le |\cos \theta |\le 1
Now multiplying the equation with a.b|\vec{a}|.|\vec{b}| we get
0a.bcosθa.b...........(2)0\le |\vec{a}|.|\vec{b}||\cos \theta |\le |\vec{a}|.|\vec{b}|...........(2)
Now from equation (1) and equation (2) we get
a.bab|\vec{a}.\vec{b}|\le |\vec{a}||\vec{b}|

So, the correct answer is “Option D”.

Note: Now dot product of two vectors is defined as a.b=a.bcosθ\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|\cos \theta and magnitude of cross product of vector is a×b=a.bsinθ|\vec{a}\times \vec{b}|=|\vec{a}|.|\vec{b}|\sin \theta , not to be confused among the two.