Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a\vec{a} and b\vec{b} are two vectors of magnitude 22, each inclined at an angle 6060^\circ, then angle between a\vec{a} and a+b\vec{a} +\vec{b} is

A

3030^\circ

B

4545^\circ

C

6060^\circ

D

9090^\circ

Answer

3030^\circ

Explanation

Solution

Let θ\theta be angle between a\vec{a} and b\vec{b} then θ=60 \theta = 60^\circ (given)
Since , a+b=a2+b2+2a.b|\vec{a} + \vec{b}| = |\vec{a}|^2 |+ |\vec{b}|^2 + 2\vec{a} .\vec{b}
=4+4+(2×2×2×cos60)= 4 + 4 + (2 \times 2 \times 2 \times \cos 60^\circ)
8+8cos60=8+4=128 + 8 \, \cos 60^\circ = 8 + 4 = 12
a+b=12=23\Rightarrow \:\:\: |\vec{a} + \vec{b}| = \sqrt{12} = 2 \sqrt{3}
Now, a(a+b)=aa+bcosx\vec{a}( \vec{a} +\vec{b} ) = |\vec{a}||\vec{a} +\vec{b}| \cos \, x
where x is angle between a\vec{a} and a+b\vec{a} + \vec{b}
a.a+a.b=43cosx\Rightarrow \:\:\: \vec{a} . \vec{a} + \vec{a} .\vec{b} = 4 \sqrt{3} \cos \: x
4+2×2cos60=43cosx4 + 2 \times 2 \: \cos 60^\circ = 4 \sqrt{3} \, \cos x
6=43cosx\Rightarrow \:\: 6 = 4\sqrt{3} \:\:\: \cos x
cosx=32=cosπ6\Rightarrow \:\:\: \cos x = \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6}
x=30\Rightarrow \:\:\: x = 30^\circ