Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a\vec{a} and b\vec{b} are non-collinear vectors, then the value of a for which the vectors u=(α2)a+b\vec{u}=\left(\alpha-2\right)\vec{a}+\vec{b} and v=(2+3α)a3b\vec{v}=\left(2+3\alpha\right)\vec{a}-3\vec{b} are collinear is :

A

32\frac{3}{2}

B

23\frac{2}{3}

C

32-\frac{3}{2}

D

23-\frac{2}{3}

Answer

23\frac{2}{3}

Explanation

Solution

Since, u\vec{u} and v\vec{v} are collinear, therefore ku+v=0\overrightarrow{ku}+\vec{v}=0
[k(α2)+2+3α]a+(k3)b=0...(i)\Rightarrow \left[k\left(\alpha-2\right)+2+3\alpha\right] \overrightarrow{a}+\left(k-3\right) \overrightarrow{b}=0 ...\left(i\right)
Since u\vec{u} and v\vec{v} are non-collinear, then for some constant mm and n,n,
ma+nb=0m=0,n=0m\,\vec{a}+n\vec{b}=0 \Rightarrow m=0, n=0
Hence from equation (i)\left(i\right)
k3=0k=3k - 3 = 0 \Rightarrow k=3
And k(α2)+2+3α=0k\left(\alpha-2\right) + 2 + 3\alpha = 0
3(α2)+2+3α=0α=23\Rightarrow 3\left(\alpha -2\right) + 2 + 3\alpha =0 \Rightarrow \alpha=\frac{2}{3}