Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a=7|\vec {a} |=7 and b=11,|\vec {b} |=11, then the angle between the vectors a+b\vec {a} +\vec {b} and ab\vec {a} -\vec {b} is equal to

A

π\pi

B

5π6\frac{5\pi }{6}

C

2π3\frac{2\pi }{3}

D

3π4\frac{3\pi }{4}

Answer

π\pi

Explanation

Solution

Given, a=7|a|=7 and b=11|b|=11
The angle between vectors a+ba+b and aba-b is cosθ=(a+b).(ab)a+b.ab=a2b218.4\cos \theta =\frac{(a+b)\,.\,(a-b)}{|a+b|\,.\,|a-b|}=\frac{|a{{|}^{2}}-|b{{|}^{2}}}{18.4} a+ba+babab|\because |a+b|\le |a|+|b||a-b|\ge |a|-|b|
=4912118.4=7272=1=\frac{49-121}{18.4}=\frac{-72}{72}=-1
\Rightarrow cosθ=cosπ\cos \,\theta =cos\,\pi
\Rightarrow θ=π\theta =\pi