Solveeit Logo

Question

Mathematics Question on Vectors

If a=3,b=2,c=1|\vec{a} | = 3, |\vec{b}| = 2, |\vec{c}| = 1 then the value of a.b+b.c+c.a|\vec{a}. \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a}| is (given that a+b+c=0\vec{a} + \vec{b} + \vec{c} = 0)

A

-7

B

7

C

14

D

-14

Answer

7

Explanation

Solution

a+b+c=0\vec{a} + \vec{b} + \vec{c} = 0 (a+b+c)2=0\Rightarrow \left(\vec{a} + \vec{b} + \vec{c} \right)^{2} = 0 a2+b2+c2+2(a.b+b.c+c.a)=0 \Rightarrow \left|\vec{a} \right|^{2} + \left|\vec{b} \right|^{2} + \left|\vec{c} \right|^{2} + 2 \left(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}\right) = 0 9+4+1+2(a.b+b.c+c.a)=0 \Rightarrow 9 + 4+1+2 \left(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} \right) = 0 a.b+b.c+c.a=7\Rightarrow \, \vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}. \vec{a} = 7