Solveeit Logo

Question

Question: If \(\vec a = 3\hat i - \hat j\) and \(\vec b = 2\hat i + \hat j - 3\hat k\), then express \(\vec b\...

If a=3i^j^\vec a = 3\hat i - \hat j and b=2i^+j^3k^\vec b = 2\hat i + \hat j - 3\hat k, then express b\vec b in the form of b=b1+b2\vec b = {\vec b_1} + {\vec b_2}, where b1a{\vec b_1}\left\| {\vec a} \right. and b2{\vec b_2} perpendicular to a\vec a.

Explanation

Solution

First we are to form the vectors from the given conditions. As given, b1a{\vec b_1}\left\| {\vec a} \right., therefore, we can say that b1=λa{\vec b_1} = \lambda \vec a. And also, b2{\vec b_2} perpendicular to a\vec a, so, we know that, b2.a=0{\vec b_2}.\vec a = 0. These two conditions will give us two equations. On equating the two equations along with the third condition given, b=b1+b2\vec b = {\vec b_1} + {\vec b_2}, we will get the required solution.

Complete step by step answer:
Here, given, a=3i^j^\vec a = 3\hat i - \hat j and b=2i^+j^3k^\vec b = 2\hat i + \hat j - 3\hat k.
We are to express, b=b1+b2(1)\vec b = {\vec b_1} + {\vec b_2} - - - \left( 1 \right)
Given, b1a{\vec b_1}\left\| {\vec a} \right..
Therefore, b1{\vec b_1} can be expressed as a scalar multiple of a\vec a.
So, we can write, b1=λa{\vec b_1} = \lambda \vec a
Now, substituting the values of a\vec a, we get,
b1=λ(3i^j^){\vec b_1} = \lambda \left( {3\hat i - \hat j} \right)
b1=3λi^λj^\Rightarrow {\vec b_1} = 3\lambda \hat i - \lambda \hat j ………….(A)
And, also given, b2{\vec b_2} perpendicular to a\vec a.
So, we know, if two vectors are perpendicular to each other, then their scalar product should be 00.
Therefore, we can write, b2.a=0{\vec b_2}.\vec a = 0
Let us assume, b2=xi^+yj^+zk^{\vec b_2} = x\hat i + y\hat j + z\hat k ……. (B)
Now, substituting the values of b2{\vec b_2} and a\vec a, we get,
b2.a=0{\vec b_2}.\vec a = 0
(xi^+yj^+zk^).(3i^j^)=0\Rightarrow (x\hat i + y\hat j + z\hat k).(3\hat i - \hat j) = 0
3xy+0=0\Rightarrow 3x - y + 0 = 0
3x=y(2)\Rightarrow 3x = y - - - \left( 2 \right)
Now, substituting the corresponding values of b,b1,b2\vec b,{\vec b_1},{\vec b_2} from (A),(B) (1)\left( 1 \right), we get,
b=b1+b2\vec b = {\vec b_1} + {\vec b_2}
(2i^+j^3k^)=(3λi^λj^)+(xi^+yj^+zk^)\Rightarrow \left( {2\hat i + \hat j - 3\hat k} \right) = \left( {3\lambda \hat i - \lambda \hat j} \right) + \left( {x\hat i + y\hat j + z\hat k} \right)
2i^+j^3k^=3λi^λj^+xi^+yj^+zk^\Rightarrow 2\hat i + \hat j - 3\hat k = 3\lambda \hat i - \lambda \hat j + x\hat i + y\hat j + z\hat k
Now, taking the coefficients of i^,j^,k^\hat i,\hat j,\hat k together on right hand side, we get,
2i^+j^3k^=(3λ+x)i^+(yλ)j^+zk^\Rightarrow 2\hat i + \hat j - 3\hat k = \left( {3\lambda + x} \right)\hat i + \left( {y - \lambda } \right)\hat j + z\hat k
Comparing the coefficients of i^,j^,k^\hat i,\hat j,\hat k on both the sides, we get,
3λ+x=2(3)3\lambda + x = 2 - - - \left( 3 \right)
yλ=1(4)y - \lambda = 1 - - - \left( 4 \right)
z=3(5)z = - 3 - - - \left( 5 \right)
Substituting 3x=y3x=y which we got from (2)\left( 2 \right) in (4)\left( 4 \right), we get,
3xλ=1(6)3x - \lambda = 1 - - - \left( 6 \right)
Now, multiplying (6)\left( 6 \right) by 33 and adding it to (3)\left( 3 \right), we get,
(3λ+x)+(3(3xλ))=2+3(1)\left( {3\lambda + x} \right) + \left( {3\left( {3x - \lambda } \right)} \right) = 2 + 3\left( 1 \right)
3λ+x+9x3λ=2+3\Rightarrow 3\lambda + x + 9x - 3\lambda = 2 + 3
Cancelling, the λ\lambda terms, we get,
10x=5\Rightarrow 10x = 5
x=12\Rightarrow x = \dfrac{1}{2}
Substituting the value of xx in (2)\left( 2 \right), we get,
y=3.12=32y = 3.\dfrac{1}{2} = \dfrac{3}{2}
Also, substituting the value of xx in (6)\left( 6 \right), we get,
3.12λ=13.\dfrac{1}{2} - \lambda = 1
32λ=1\Rightarrow \dfrac{3}{2} - \lambda = 1
Subtracting 32\dfrac{3}{2} on both sides, we get,
λ=132\Rightarrow - \lambda = 1 - \dfrac{3}{2}
λ=12\Rightarrow - \lambda = - \dfrac{1}{2}
Multiplying, both sides by 1 - 1, we get,
λ=12\lambda = \dfrac{1}{2}
Therefore, x=12,y=32,z=3,λ=12x = \dfrac{1}{2},y = \dfrac{3}{2},z = - 3,\lambda = \dfrac{1}{2}.
Substituting these values in b1{\vec b_1} and b2{\vec b_2}, we get,
b1=3λi^λj^{\vec b_1} = 3\lambda \hat i - \lambda \hat j
b1=3.12.i^12.j^\Rightarrow {\vec b_1} = 3.\dfrac{1}{2}.\hat i - \dfrac{1}{2}.\hat j
b1=32i^12j^\Rightarrow {\vec b_1} = \dfrac{3}{2}\hat i - \dfrac{1}{2}\hat j
And, b2=xi^+yj^+zk^{\vec b_2} = x\hat i + y\hat j + z\hat k
b2=12.i^+32.j^+(3)k^\Rightarrow {\vec b_2} = \dfrac{1}{2}.\hat i + \dfrac{3}{2}.\hat j + \left( { - 3} \right)\hat k
b2=12i^+32j^3k^\Rightarrow {\vec b_2} = \dfrac{1}{2}\hat i + \dfrac{3}{2}\hat j - 3\hat k
Therefore, b=(32i^12j^)+(12i^+32j^3k^)\vec b = \left( {\dfrac{3}{2}\hat i - \dfrac{1}{2}\hat j} \right) + \left( {\dfrac{1}{2}\hat i + \dfrac{3}{2}\hat j - 3\hat k} \right).

Note:
When two vectors are parallel to each other, all the points in one vector are at a certain distance from their corresponding points in the other vector. Hence, one vector can be expressed as a scalar multiple of the other vector. And, when two vectors are perpendicular to each other, their scalar product is 00, because, in the scalar product there is a term of cosθ\cos \theta , where θ\theta is the angle between the two vectors. So, cos90=0\cos 90^\circ = 0, hence the whole product turns out to be 00.