Solveeit Logo

Question

Question: If \[\vec a = 2\hat i + \lambda \hat j - 3\hat k\] and \[\vec b = 4\hat i - 3\hat j - 2\hat k\] are ...

If a=2i^+λj^3k^\vec a = 2\hat i + \lambda \hat j - 3\hat k and b=4i^3j^2k^\vec b = 4\hat i - 3\hat j - 2\hat k are perpendicular to each other then find the value of scalar λ\lambda .

Explanation

Solution

Hint: When two vectors are perpendicular to each other then the dot product between those vectors will be equal to zero i.e. a\vec ab\vec b=0.

Complete step by step answer:
Given a=2i^+λj^3k^\vec a = 2\hat i + \lambda \hat j - 3\hat k
b=4i^3j^2k^\vec b = 4\hat i - 3\hat j - 2\hat k
Now according to question,
Both the vectors a\vec a and b\vec b are perpendicular to each other.
∴ Their dot product = 0
Now we will multiply the two vectors according to dot product rules
So we have, a\vec ab\vec b=0

(2i^+λj^3k^).(4i^3j^2k^)=0 2i^.4i^+λj^.(3j^)+(3k^).(2k^)=0 8+(3λ)+6=0 14+(3λ)=0 (3λ)=14 λ=143  \Rightarrow (2\hat i + \lambda \hat j - 3\hat k).(4\hat i - 3\hat j - 2\hat k) = 0 \\\ \Rightarrow 2\hat i.4\hat i + \lambda \hat j.\left( { - 3\hat j} \right) + \left( { - 3\hat k} \right).\left( { - 2\hat k} \right) = 0 \\\ \Rightarrow 8 + ( - 3\lambda ) + 6 = 0 \\\ \Rightarrow 14 + ( - 3\lambda ) = 0 \\\ \Rightarrow ( - 3\lambda ) = 14 \\\ \Rightarrow \lambda = - \dfrac{{14}}{3} \\\

∴ The value of λ\lambda is 143\dfrac{{ - 14}}{3}.

Note: The following vector rules of dot product are to be kept in mind always:
i^.i^=1\hat i.\hat i = 1
j^.j^=1\hat j.\hat j = 1
k^.k^=1\hat k.\hat k = 1
i^.j^=0\hat i.\hat j = 0
j^.k^=0\hat j.\hat k = 0
k^.i^=0\hat k.\hat i = 0
Because of these rules we multiplied the same unit vectors only.