Solveeit Logo

Question

Mathematics Question on Vectors

If a=2i^+j^+3k^\vec a= 2\hat i +\hat j + 3\hat k, b=3i^+3j^+k^\vec b = 3\hat i + 3\hat j + \hat k and c=c1i^+c2j^+c3k^\vec c = c_1\hat i + c_2\hat j + c_3\hat k are coplanar vectors and a.c=5\vec a.\vec c = 5, bc\vec b⊥\vec c then 122(c1+c2+c3)122( c_1 + c_2 + c_3 ) is equal to _____ .

Answer

2C1+C2\+3C3=52C_1 + C_2 \+ 3C_3 = 5 …(i)
3C1\+3C2+C3=03C_1 \+ 3C_2 + C_3 = 0 …(ii)
[abc]=213\[0.3em]331\[0.3em]C1C2C3[ \vec a \vec b\vec c] = \begin{vmatrix} 2 & 1 & 3 \\\[0.3em] 3 & 3 & 1 \\\[0.3em] C_1 & C_2 & C_3 \end{vmatrix}
=2(3C3C2)1(3C3C1)+3(3C23C1)= 2(3C_3 – C_2) – 1(3C_3 – C_1) + 3(3C_2 – 3C_1)
=3C3\+7C28C1= 3C_3 \+ 7C_2 – 8C_1
8C17C23C3=0⇒ 8C_1 – 7C_2 – 3C_3 = 0 …(iii)
C1=C_1= 10122\frac {10}{122},

C_2 =$$-\frac {85}{122}

C3=C_3 = 225122\frac {225}{122}

122(C1+C2+C3)122(C_1 + C_2 + C_3)
= 122122 (10122\frac {10}{122} 85122-\frac {85}{122} +225122\frac {225}{122} )
= 1085+22510-85+225
= 150150

So, the answer is 150150.