Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a=2i^+3j^k^,b=i^+2j^5k^,c=3i^+5j^k^,\vec {a}= {2\hat{i}}+3\hat{j}-\hat k,\vec b = \hat i+2 \hat j-5 \hat k ,\vec{ c} =3 \hat i+ 5\hat j-\hat k, then a vector perpendicular to a\vec{a} and in the plane containing b\vec {b} and c\vec {c} is

A

17i^+21j^123k^17 \hat i+21 \hat{j} -123 \hat k

B

17i^+21j^97k^-17 \hat i+21 \hat{j} -97 \hat k

C

17i^21j^97k^-17 \hat i-21 \hat{j} -97 \hat k

D

17i^21j^+97k^-17 \hat i-21 \hat{j} +97 \hat k

Answer

17i^21j^97k^-17 \hat i-21 \hat{j} -97 \hat k

Explanation

Solution

We know that a vector perpendicular to a and in the plane containing b\vec{b} and c\vec{c} is given by
a×(b×c).\vec{a} \times (\vec{b} \times \vec{c}).
Given a=2i^+3j^k^\vec{a} = 2\hat{i} + 3 \hat{j} - \hat{k}
b=i^+2j^5k^\vec{b} = \hat{i} + 2 \hat{j} - 5 \hat{k} and c=3i^+5j^k^\vec{c} = 3 \hat{i } + 5 \hat{j} - \hat{k}
b×c=i^j^k^ 125 351=23i^14j^k^\therefore \vec{b} \times\vec{c} = \begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\\ 1 &2&-5\\\ 3&5&-1\end{vmatrix} = 23 \hat{i} - 14 \hat{j} - \hat{k}
Now, a×(b×c)=i^j^k^ 231 23141\vec{a} \times\left( \vec{b} \times\vec{c}\right) = \begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\\ 2&3&-1\\\ 23&-14&-1\end{vmatrix}
=(314)i^j^(2+23)+k^(2869)= (-3 - 14) \hat{ i} - \hat{j} (-2+ 23) + \hat{k} (-28 - 69)
=17i^21j^97k^= -17 \hat{i} - 21 \hat{ j} - 9 7 \hat{k}
Which is the required vector.