Question
Mathematics Question on Vector Algebra
If a=2i^+2j^+3k^,b=−i^+2j^+k^ and c=3i^+j^ are such that a+λb is perpendicular to c ,then find the value of λ.
Answer
The correct answer is: 8
The given vectors are a=2i^+2j^+3k^,b=−i^+2j^+k^,and c=3i^+j^
Now,
a+λb
=(2\hat{i}+2\hat{j}+3\hat{k})$$+\lambda(-\hat{i}+2\hat{j}+\hat{k})
=(2−λ)i^+((2+2λ)j^+(3+λ)k^
if (a+λb) is perpendicular to c, then
(a+λb).c=0
⇒[(2−λ)i^+(2+2λ)j^+(3+λ)k^].(3i^+j^)=0
⇒(2−λ)3+(2+2λ)1+(3+λ)0=0
⇒6−3λ+2+2λ=0
⇒−λ+8=0
⇒λ=8
Hence,the required value of λ is 8.