Solveeit Logo

Question

Question: If value of \[{\left( {r\cos \theta - \sqrt 3 } \right)^2} + {\left( {r\sin \theta - 1} \right)^2} =...

If value of (rcosθ3)2+(rsinθ1)2=0{\left( {r\cos \theta - \sqrt 3 } \right)^2} + {\left( {r\sin \theta - 1} \right)^2} = 0 then rtanθ+secθrsecθ+tan=?\dfrac{{r\tan \theta + \sec \theta }}{{r\sec \theta + \tan }} = ?

Explanation

Solution

We need to find the value of the given expression. We will equate both terms inside the bracket with zero to obtain the value of tanθ\tan \theta from there. We will then find the value of secθ\sec \theta . We will then substitute their values in the expression whose value we need to find. From there, we will get the value of the given expression.

Complete step-by-step answer:
It is given that,
(rcosθ3)2+(rsinθ1)2=0{\left( {r\cos \theta - \sqrt 3 } \right)^2} + {\left( {r\sin \theta - 1} \right)^2} = 0
This is the sum of two positive terms as the square of any term is positive. This is possible only when
\Rightarrow (rcosθ3)2=0{\left( {r\cos \theta - \sqrt 3 } \right)^2} = 0 and (rsinθ1)2=0{\left( {r\sin \theta - 1} \right)^2} = 0.
Now solving each term individually, we get
\Rightarrow (rcosθ3)2=0{\left( {r\cos \theta - \sqrt 3 } \right)^2} = 0
Taking square root on both sides, we get
(rcosθ3)2=0rcosθ3=0\Rightarrow \sqrt {{{\left( {r\cos \theta - \sqrt 3 } \right)}^2}} = \sqrt 0 \\\\\Rightarrow r\cos \theta - \sqrt 3 = 0
Adding 3\sqrt 3 on both sides, we get
\Rightarrow rcosθ3+3=0+3r\cos \theta - \sqrt 3 + \sqrt 3 = 0 + \sqrt 3
\Rightarrow rcosθ=3r\cos \theta = \sqrt 3 ……………….(1)\left( 1 \right)
Now, we will evaluate (rsinθ1)2=0{\left( {r\sin \theta - 1} \right)^2} = 0.
Taking square root on both sides, we get
(rsinθ1)2=0rsinθ1=0\Rightarrow \sqrt {{{\left( {r\sin \theta - 1} \right)}^2}} = \sqrt 0 \\\\\Rightarrow r\sin \theta - 1 = 0
Adding 1 on both sides, we get
\Rightarrow rsinθ1+1=0+1r\sin \theta - 1 + 1 = 0 + 1
\Rightarrow rsinθ=1r\sin \theta = 1 ……………….(2)\left( 2 \right)
We will now divide equation (1)\left( 1 \right) by equation (2)\left( 2 \right) now.
\Rightarrow rsinθrcosθ=13\dfrac{{r\sin \theta }}{{r\cos \theta }} = \dfrac{1}{{\sqrt 3 }}
On further simplification, we get
tanθ=13θ=300\Rightarrow \tan \theta = \dfrac{1}{{\sqrt 3 }}\\\\\Rightarrow \theta = {30^0}
We will calculate the value of secθ\sec \theta now.
We know, secθ=1+tan2θ\sec \theta = \sqrt {1 + {{\tan }^2}\theta }
We will put the value of tanθ\tan \theta
\Rightarrow secθ=1+(13)2\sec \theta = \sqrt {1 + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}}
Simplifying the terms, we get
\Rightarrow secθ=1+13=23\sec \theta = \sqrt {1 + \dfrac{1}{3}} = \dfrac{2}{{\sqrt 3 }}
Now we will find the value of rr.
Squaring and adding equation (1)\left( 1 \right) and equation (2)\left( 2 \right), we get
\Rightarrow r2cos2θ+r2sin2θ=(3)2+12{r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta = {\left( {\sqrt 3 } \right)^2} + {1^2}
Simplifying the equation, we get
\Rightarrow r2(cos2θ+sin2θ)=4{r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) = 4
We know from trigonometric identities that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 .
Therefore we can rewrite the equation as,
r2=4{r^2} = 4
Taking square root on both sides, we get
r2=4 r=2\Rightarrow \sqrt {{r^2}} = \sqrt 4 \\\ \Rightarrow r = 2
Now we will calculate the value of rtanθ+secθrsecθ+tan\dfrac{{r\tan \theta + \sec \theta }}{{r\sec \theta + \tan }}.
Here we will put the value of tanθ\tan \theta , rr and secθ\sec \theta .
\Rightarrow rtanθ+secθrsecθ+tanθ=2.13+232.23+13\dfrac{{r\tan \theta + \sec \theta }}{{r\sec \theta + \tan \theta }} = \dfrac{{2.\dfrac{1}{{\sqrt 3 }} + \dfrac{2}{{\sqrt 3 }}}}{{2.\dfrac{2}{{\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}}}
Simplifying the terms, we get
\Rightarrow rtanθ+secθrsecθ+tan=2+24+1=45\dfrac{{r\tan \theta + \sec \theta }}{{r\sec \theta + \tan }} = \dfrac{{2 + 2}}{{4 + 1}} = \dfrac{4}{5}
This is the required answer.

Note: Here it is important for us to remember all the identities and properties of trigonometric functions. We have also used the concept that if a and b are two numbers and it is given that a2+b2=0{a^2} + {b^2} = 0 then the value of both a and b is zero. This is because a2{a^2} is positive and b2{b^2} is also positive, their sum is zero only when aa and bb both are zero.