Solveeit Logo

Question

Question: If V be the volume of a tetrahedron and \[V'\] be the volume of another tetrahedron formed by the ce...

If V be the volume of a tetrahedron and VV' be the volume of another tetrahedron formed by the centroids of faces of the previous tetrahedron andV=KVV = KV' , then K is equal to
a. 99
b. 1212
c. 2727
d. 8181

Explanation

Solution

To solve this question let the vertices of the tetrahedron are O(0,0,0)(0,0,0) , A(a,0,0)(a,0,0), B (0,b,0)(0,b,0)and C (0,0,c)(0,0,c). The Volume of tetrahedron is V=16[abc]\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ] .
Find the centroids of the each faces OAB, OAC, OBC,ABC are say H1(a3,b3,0){H_1}\left( {\dfrac{a}{3},\dfrac{b}{3},0} \right) , H2(a3,0,c3){H_2}\left( {\dfrac{a}{3},0,\dfrac{c}{3}} \right), H3{H_3} (0,b3,c3)\left( {0,\dfrac{b}{3},\dfrac{c}{3}} \right) and H4(a3,b3,c3){H_4}\left( {\dfrac{a}{3},\dfrac{b}{3},\dfrac{c}{3}} \right).
Since the distances are H4H1=c3\overrightarrow {{H_4}{H_1}} = \dfrac{{\overrightarrow c }}{3}, H4H2=b3\overrightarrow {{H_4}{H_2}} = \dfrac{{\overrightarrow b }}{3},H4H3=a3\overrightarrow {{H_4}{H_3}} = \dfrac{{\overrightarrow a }}{3}, Volume of tetrahedron by centroids,
V=16[a3b3c3]V' = \dfrac{1}{6}\left[ {\dfrac{{\overrightarrow a }}{3}\,\,\dfrac{{\overrightarrow b }}{3}\,\,\dfrac{{\overrightarrow c }}{3}} \right]
By substituting V=16[abc]\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ]into VV'we can get the required relationship.

Complete step by step answer:
Consider vertices of the tetrahedron are O(0,0,0)(0,0,0) , A(a,0,0)(a,0,0), B (0,b,0)(0,b,0)and C (0,0,c)(0,0,c).
The Volume of tetrahedron is V=16[abc]\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ] , where a\overrightarrow a \,, b\vec b, and c\overrightarrow c are the distances OA\overrightarrow {OA} , OB\overrightarrow {OB} ,and OC\overrightarrow {OC} respectively.
The centroid is given by coordinates: a triangle with vertices at (x1, y1,z1)\left( {{x_1},{\text{ }}{y_1},{z_1}} \right),(x2, y2,z2)\left( {{x_2},{\text{ }}{y_2},{z_2}} \right),(x3, y3,z3)\left( {{x_3},{\text{ }}{y_3},{z_3}} \right) has centroid at (x1 + y1+z13,x2 + y2+z23,x3 + y3+z33)\left( {\dfrac{{{x_1}{\text{ + }}{y_1} + {z_1}}}{3},\dfrac{{{x_2}{\text{ + }}{y_2} + {z_2}}}{3},\dfrac{{{x_3}{\text{ + }}{y_3} + {z_3}}}{3}} \right) .
Now, apply the centroids formula of faces of the tetrahedron O(0,0,0)(0,0,0) , A(a,0,0)(a,0,0), B (0,b,0)(0,b,0).
The centroids of the face OAB is found by substituting (x1, y1,z1)=(0,0,0)\left( {{x_1},{\text{ }}{y_1},{z_1}} \right) = (0,0,0),(x2, y2,z2)=(a,0,0)\left( {{x_2},{\text{ }}{y_2},{z_2}} \right) = (a,0,0)and (x3, y3,z3)=(0, b,0)\left( {{x_3},{\text{ }}{y_3},{z_3}} \right) = \left( {0,{\text{ }}b,0} \right).into the formula.
The centroid is H1(a3,b3,0){H_1}\left( {\dfrac{a}{3},\dfrac{b}{3},0} \right).
Similarly we can find centroids of faces OAC, OBC,ABC are , H2(a3,0,c3){H_2}\left( {\dfrac{a}{3},0,\dfrac{c}{3}} \right), H3{H_3} (0,b3,c3)\left( {0,\dfrac{b}{3},\dfrac{c}{3}} \right) and H4(a3,b3,c3){H_4}\left( {\dfrac{a}{3},\dfrac{b}{3},\dfrac{c}{3}} \right)respectively.
Since the distances are H4H1=c3\overrightarrow {{H_4}{H_1}} = \dfrac{{\overrightarrow c }}{3}, H4H2=b3\overrightarrow {{H_4}{H_2}} = \dfrac{{\overrightarrow b }}{3},H4H3=a3\overrightarrow {{H_4}{H_3}} = \dfrac{{\overrightarrow a }}{3}, Volume of tetrahedron by centroids,
V=16[a3b3c3]V' = \dfrac{1}{6}\left[ {\dfrac{{\overrightarrow a }}{3}\,\,\dfrac{{\overrightarrow b }}{3}\,\,\dfrac{{\overrightarrow c }}{3}} \right]
By substituting V= 16[abc]\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ] into VV'we can get the required relationship.
V=16×127[abc]V' = \dfrac{1}{6} \times \dfrac{1}{{27}}\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]
V=127VV' = \dfrac{1}{{27}}V
27V=V27V' = V
Here, the value of KK is 2727 .

Note: Use Distance formula to find H4H1=c3\overrightarrow {{H_4}{H_1}} = \dfrac{{\overrightarrow c }}{3}.
If H1(a3,b3,0){H_1}\left( {\dfrac{a}{3},\dfrac{b}{3},0} \right)and H4(a3,b3,c3){H_4}\left( {\dfrac{a}{3},\dfrac{b}{3},\dfrac{c}{3}} \right)then distance,
H4H1=(a3a3)2+(b3b3)2+(0c3)2\overrightarrow {{H_4}{H_1}} = \sqrt {{{\left( {\dfrac{a}{3} - \dfrac{a}{3}} \right)}^2} + {{\left( {\dfrac{b}{3} - \dfrac{b}{3}} \right)}^2} + {{\left( {0 - \dfrac{c}{3}} \right)}^2}}
H4H1=0+0+(c3)2\overrightarrow {{H_4}{H_1}} = \sqrt {0 + 0 + {{\left( {\dfrac{c}{3}} \right)}^2}}
H4H1=c3\overrightarrow {{H_4}{H_1}} = \dfrac{c}{3}