Solveeit Logo

Question

Question: If V = 100 sin (100*t*) V and\(I = 100\sin\ \left( \text{100t} + \frac{\pi}{3} \right)\text{ mA}\)ar...

If V = 100 sin (100t) V andI=100sin (100t+π3) mAI = 100\sin\ \left( \text{100t} + \frac{\pi}{3} \right)\text{ mA}are the instantaneous values of voltage and current, then the rms values of voltage and current are respectively

A

70.7 V, 70.7 mA

B

70.7 V, 70.7 A

C

141.4 V, 141.4 mA

D

100 V, 100 mA

Answer

70.7 V, 70.7 mA

Explanation

Solution

: The instantaneous value of voltage is

V=100sin(100t)VV = 100\sin(100t)V

Compare it with

V=V0sin(ωt)VV = V_{0}\sin(\omega t)V

we get

V0=100V,ω=100rads1V_{0} = 100V,\omega = 100rads^{- 1}

The rms value of voltage is,

Vrms=V02=1002V=70.7VV_{rms} = \frac{V_{0}}{\sqrt{2}} = \frac{100}{\sqrt{2}}V = 70.7V

The instantaneous value of current is

I=100sin(100t+π3)mAI = 100\sin\left( 100t + \frac{\pi}{3} \right)mA

Compare it with

I=I0sin(ωt+φ)I = I_{0}\sin(\omega t + \varphi)

we get

I0=100mA,ω=100rads1I_{0} = 100mA,\omega = 100rads^{- 1}

The rms value of current is

Irms=I02=1002mA=70.7mAI_{rms} = \frac{I_{0}}{\sqrt{2}} = \frac{100}{\sqrt{2}}mA = 70.7mA