Question
Question: If u<sub>n</sub> = dx, prove that
un = – (n+2)xn−1(a2−x2)3/2+ (n+2)(n−1) a2 un– 2
A
un = – (n+2)xn−1(a2−x2)3/2 + (n+2)(n−1) a2 un–2
B
un = (n+2)xn−1(a2−x2)3/2 + (n+2)(n−1) a2 un–2
C
un = (n+2)xn−1(a2−x2) + (n+2)(n−1) a2 un–2
D
None of these
Answer
un = – (n+2)xn−1(a2−x2)3/2 + (n+2)(n−1) a2 un–2
Explanation
Solution
Q un = ∫xn(a2−x2)dx = ∫xn−1{x (a2−x2)} dx
Integrating by parts taking xn–1 as first function, we have
= xn–1 {3−(a2−x2)3/2} +
∫(n−1) 3xn−2(a2−x2)3/2dx
Žun = –3xn−1(a2−x2)3/2 + 3(n−1) ∫xn−2 (a2 – x2) (a2−x2)dx
Žun = –3xn−1(a2−x2)3/2 + 3(n−1)a2
un – 2 – 3(n−1)un
Ž 3(n+2)un = –3xn−1(a2−x2)3/2 + 3(n−1)a2un−2
Ž un = – (n+2)xn−1(a2−x2)3/2 + (n+2)(n−1) a2 un– 2