Solveeit Logo

Question

Question: If u<sub>n</sub> = ![](https://cdn.pureessence.tech/canvas_458.png?top_left_x=1200&top_left_y=603&wi...

If un = (a2x2)\sqrt{(a^{2} - x^{2})}dx, prove that

un = – xn1(a2x2)3/2(n+2)\frac{x^{n - 1}(a^{2} - x^{2})^{3/2}}{(n + 2)}+ (n1)(n+2)\frac{(n - 1)}{(n + 2)} a2 un– 2

A

un = – xn1(a2x2)3/2(n+2)\frac{x^{n - 1}(a^{2} - x^{2})^{3/2}}{(n + 2)} + (n1)(n+2)\frac{(n - 1)}{(n + 2)} a2 un–2

B

un = xn1(a2x2)3/2(n+2)\frac{x^{n - 1}(a^{2} - x^{2})^{3/2}}{(n + 2)} + (n1)(n+2)\frac{(n - 1)}{(n + 2)} a2 un–2

C

un = xn1(a2x2)(n+2)\frac{x^{n - 1}(a^{2} - x^{2})}{(n + 2)} + (n1)(n+2)\frac{(n - 1)}{(n + 2)} a2 un–2

D

None of these

Answer

un = – xn1(a2x2)3/2(n+2)\frac{x^{n - 1}(a^{2} - x^{2})^{3/2}}{(n + 2)} + (n1)(n+2)\frac{(n - 1)}{(n + 2)} a2 un–2

Explanation

Solution

Q un = xn(a2x2)\int_{}^{}{x^{n}\sqrt{(a^{2} - x^{2})}}dx = xn1\int_{}^{}x^{n - 1}{x (a2x2)\sqrt{(a^{2} - x^{2})}} dx

Integrating by parts taking xn–1 as first function, we have

= xn–1 {(a2x2)3/23}\left\{ \frac{- (a^{2} - x^{2})^{3/2}}{3} \right\} +

(n1)\int_{}^{}{(n - 1)} xn2(a2x2)3/23\frac{x^{n - 2}(a^{2} - x^{2})^{3/2}}{3}dx

Žun = –xn1(a2x2)3/23\frac{x^{n - 1}(a^{2} - x^{2})^{3/2}}{3} + (n1)3\frac{(n - 1)}{3} xn2\int_{}^{}x^{n - 2} (a2 – x2) (a2x2)\sqrt{(a^{2} - x^{2})}dx

Žun = –xn1(a2x2)3/23\frac{x^{n - 1}(a^{2} - x^{2})^{3/2}}{3} + (n1)a23\frac{(n - 1)a^{2}}{3}

un – 2(n1)3\frac{(n - 1)}{3}un

Ž (n+2)3\frac{(n + 2)}{3}un = –xn1(a2x2)3/23\frac{x^{n - 1}(a^{2} - x^{2})^{3/2}}{3} + (n1)a2un23\frac{(n - 1)a^{2}u_{n - 2}}{3}

Ž un = – xn1(a2x2)3/2(n+2)\frac{x^{n - 1}(a^{2} - x^{2})^{3/2}}{(n + 2)} + (n1)(n+2)\frac{(n - 1)}{(n + 2)} a2 un– 2