Question
Question: If U<sub>n</sub> = \(\left| \begin{matrix} 1 & k & k \\ 2n & k^{2} + k + 1 & k^{2} + k \\ 2n - 1 & k...
If Un = 12n2n−1kk2+k+1k2kk2+kk2+k+1 and
∑n=1kUn=72then k =
A
8
B
9
C
6
D
None of these
Answer
8
Explanation
Solution
We have,
∑n=1kUn= ∑n=1k12∑n=1kn2∑n=1kn−∑n=1k1kk2+k+1k2kk2+kk2+k+1
= kk(k+1)k2kk2+k+1k2kk2+kk2+k+1
= kk2+kk2010kk2+kk2+k+1
[Applying C2 → C2 – C1]
= k(k2 + k + 1) – k3 = k(k + 1) = 72 (given)
⇒ k = 8
Hence (1) is correct answer.