Solveeit Logo

Question

Question: If U<sub>n</sub> = \(\left| \begin{matrix} 1 & k & k \\ 2n & k^{2} + k + 1 & k^{2} + k \\ 2n - 1 & k...

If Un = 1kk2nk2+k+1k2+k2n1k2k2+k+1\left| \begin{matrix} 1 & k & k \\ 2n & k^{2} + k + 1 & k^{2} + k \\ 2n - 1 & k^{2} & k^{2} + k + 1 \end{matrix} \right| and

n=1kUn=72\sum_{n = 1}^{k}{U_{n} = 72}then k =

A

8

B

9

C

6

D

None of these

Answer

8

Explanation

Solution

We have,

n=1kUn\sum_{n = 1}^{k}U_{n}= n=1k1kk2n=1knk2+k+1k2+k2n=1knn=1k1k2k2+k+1\left| \begin{matrix} \sum_{n = 1}^{k}1 & k & k \\ 2\sum_{n = 1}^{k}n & k^{2} + k + 1 & k^{2} + k \\ 2\sum_{n = 1}^{k}n - \sum_{n = 1}^{k}1 & k^{2} & k^{2} + k + 1 \end{matrix} \right|

= kkkk(k+1)k2+k+1k2+kk2k2k2+k+1\left| \begin{matrix} k & k & k \\ k(k + 1) & k^{2} + k + 1 & k^{2} + k \\ k^{2} & k^{2} & k^{2} + k + 1 \end{matrix} \right|

= k0kk2+k1k2+kk20k2+k+1\left| \begin{matrix} k & 0 & k \\ k^{2} + k & 1 & k^{2} + k \\ k^{2} & 0 & k^{2} + k + 1 \end{matrix} \right|

[Applying C2 → C2 – C1]

= k(k2 + k + 1) – k3 = k(k + 1) = 72 (given)

⇒ k = 8

Hence (1) is correct answer.