Solveeit Logo

Question

Question: If \(\underset{x\to 4}{\mathop{\lim }}\,\dfrac{4x+3}{x-2}\) has value \(\dfrac{k}{2}\). Find k....

If limx44x+3x2\underset{x\to 4}{\mathop{\lim }}\,\dfrac{4x+3}{x-2} has value k2\dfrac{k}{2}. Find k.

Explanation

Solution

Hint: We will be using the concept of limit to solve the problem. We will first determine whether limit exists or not then find the value of limit and equate the limit will k2\dfrac{k}{2} to get the required answer.

Complete step-by-step answer:
Now, we have been given that limx44x+3x2\underset{x\to 4}{\mathop{\lim }}\,\dfrac{4x+3}{x-2} has value k2\dfrac{k}{2}.
So, first we have to find the value of limx44x+3x2\underset{x\to 4}{\mathop{\lim }}\,\dfrac{4x+3}{x-2}.
Now, we know that the limit of a function at a point c in its domain is the value that the function approaches as its arrangement x approaches it.
Now, we know that,
limxaf(x)g(x)=f(a)g(a)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{f\left( a \right)}{g\left( a \right)}
So, we have,
limxaf(x)g(x)=4(x)+3x2 =4(4)+342 =16+32 =192 \begin{aligned} & \underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{4\left( x \right)+3}{x-2} \\\ & =\dfrac{4\left( 4 \right)+3}{4-2} \\\ & =\dfrac{16+3}{2} \\\ & =\dfrac{19}{2} \\\ \end{aligned}
Now, we have been given that,
limx44x+3x2=k2 192=k2 k=19 \begin{aligned} & \underset{x\to 4}{\mathop{\lim }}\,\dfrac{4x+3}{x-2}=\dfrac{k}{2} \\\ & \dfrac{19}{2}=\dfrac{k}{2} \\\ & k=19 \\\ \end{aligned}
So, the value of k is 19.

Note: To solve these type of questions it is important to note that the limxaf(x)g(x)=f(a)g(a)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{f\left( a \right)}{g\left( a \right)}.
Also, one can remember several other important limits like,
limx0sinxx=1 limx0(1+1x)x=e \begin{aligned} & \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 \\\ & \underset{x\to 0}{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=e \\\ \end{aligned}