Solveeit Logo

Question

Question: If under the action of a force (\[4\widehat i + \widehat j + 3\widehat k\]) N, a particle moves from...

If under the action of a force (4i^+j^+3k^4\widehat i + \widehat j + 3\widehat k) N, a particle moves from position r1=3i^+2j^6k^\overrightarrow {{r_1}} = 3\widehat i + 2\widehat j - 6\widehat k to position r2=14i^+13j^+9k^\overrightarrow {{r_2}} = 14\widehat i + 13\widehat j + 9\widehat k, then what will be the work done?
A.{\text{A}}{\text{.}} 50 J
B.{\text{B}}{\text{.}} 75 J
C.{\text{C}}{\text{.}} 100 J
D.{\text{D}}{\text{.}} 175 J

Explanation

Solution

Hint- Here, we will proceed by finding out the displacement covered by the given particle with the help of the initial and final position vectors. Finally, we will use the formula for the work done in vector form.

Formulas Used- d=r2r1\overrightarrow d = \overrightarrow {{r_2}} - \overrightarrow {{r_1}} , W=F.d{\text{W}} = \overrightarrow {\text{F}} .\overrightarrow d and x.y=(ai^+bj^+ck^).(di^+ej^+fk^)=ad+be+cf\overrightarrow x .\overrightarrow y = \left( {a\widehat i + b\widehat j + c\widehat k} \right).\left( {d\widehat i + e\widehat j + f\widehat k} \right) = ad + be + cf.

Complete step-by-step solution -
Given, the uniform force (constant force) applied to a particle is F=4i^+j^+3k^\overrightarrow {\text{F}} = 4\widehat i + \widehat j + 3\widehat k N
Initial position vector of the particle is r1=3i^+2j^6k^\overrightarrow {{r_1}} = 3\widehat i + 2\widehat j - 6\widehat k
Final position vector of the particle is r2=14i^+13j^+9k^\overrightarrow {{r_2}} = 14\widehat i + 13\widehat j + 9\widehat k
As we know that the displacement vector d\overrightarrow d for any particle having initial position vector r1\overrightarrow {{r_1}} and final position vector r2\overrightarrow {{r_2}} is simply given by subtracting the initial position vector r1\overrightarrow {{r_1}} from the final position vector r2\overrightarrow {{r_2}}
i.e., d=r2r1\overrightarrow d = \overrightarrow {{r_2}} - \overrightarrow {{r_1}}
By substituting the values of the initial position vector r1\overrightarrow {{r_1}} and final position vector r2\overrightarrow {{r_2}} for the given particle, we get

d=14i^+13j^+9k^(3i^+2j^6k^) d=14i^+13j^+9k^3i^2j^+6k^ d=11i^+11j^+15k^  \Rightarrow \overrightarrow d = 14\widehat i + 13\widehat j + 9\widehat k - \left( {3\widehat i + 2\widehat j - 6\widehat k} \right) \\\ \Rightarrow \overrightarrow d = 14\widehat i + 13\widehat j + 9\widehat k - 3\widehat i - 2\widehat j + 6\widehat k \\\ \Rightarrow \overrightarrow d = 11\widehat i + 11\widehat j + 15\widehat k \\\

Also, we know that the work done W by any particle in vector form can be written as the dot product of the uniform force applied F\overrightarrow {\text{F}} on the particle and the displacement vector d\overrightarrow d
W=F.d{\text{W}} = \overrightarrow {\text{F}} .\overrightarrow d
By substituting the values of the force applied and displacement occurred for the given particle, we get
W=(4i^+j^+3k^).(11i^+11j^+15k^) (1)\Rightarrow {\text{W}} = \left( {4\widehat i + \widehat j + 3\widehat k} \right).\left( {11\widehat i + 11\widehat j + 15\widehat k} \right){\text{ }} \to {\text{(1)}}
Also, the dot product of any two vectors x=ai^+bj^+ck^\overrightarrow x = a\widehat i + b\widehat j + c\widehat k and y=di^+ej^+fk^\overrightarrow y = d\widehat i + e\widehat j + f\widehat k is given by

\Rightarrow \overrightarrow x .\overrightarrow y = ad + be + cf{\text{ }} \to {\text{(2)}} \\\ $$ From the above formula, it is clear that the dot product of any two vectors will be equal to the sum of the products of the corresponding coefficients of $$\widehat i,\widehat j,\widehat k$$ Using the above concept and formula given by equation (2) in equation (1), we get $ \Rightarrow {\text{W}} = 4 \times 11 + 1 \times 11 + 3 \times 15 \\\ \Rightarrow {\text{W}} = 44 + 11 + 45 \\\ \Rightarrow {\text{W}} = 100{\text{ J}} \\\ $ Therefore, the work done on the particle is 100 Joules. Hence, option C is correct. Note- A scalar quantity is the one having just magnitude whereas a vector quantity is the one with magnitude as well as direction. It is important to note that the dot product of any two vectors will always result in a scalar quantity. That’s why the work done is a scalar quantity because it is the dot product of two vectors i.e., force and displacement.