Solveeit Logo

Question

Chemistry Question on Structure of atom

If uncertainty in position and momentum are equal, then uncertainty in velocity is

A

12mhπ\frac{1}{2m}\sqrt{\frac{h}{\pi}}

B

h2π\sqrt{\frac{h}{2\pi}}

C

1mhπ\frac{1}{m}\sqrt{\frac{h}{\pi}}

D

hπ\sqrt{\frac{h}{\pi}}

Answer

12mhπ\frac{1}{2m}\sqrt{\frac{h}{\pi}}

Explanation

Solution

According to Heisenberg's uncertainty principle
Δx.Δp=h4π\Delta x. \Delta p=\frac{h}{4\pi}
Given, Δx=Δp(Δx=\Delta x=\Delta p (\Delta x= = uncertainty in position)
(\Delta p)^2=\frac{h}{4\pi} \hspace15mm (\Delta p=m \times \Delta v)
m^2 \Delta v^2=\frac{h}{4\pi}\hspace15mm m = mass
Δv2=hm24π\Delta v^2=\frac{h}{m^2 4\pi}
Δv=12mhπ\Delta v=\frac{1}{2m}\sqrt{\frac{h}{\pi}}
Δv\Delta v= uncertinty in velocity)