Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If u,vu,v and ww are functions of xx,then show that
ddx(u.v.w)=dudxv.w+u.dvdx+u.vdwdx\frac{d}{dx}(u.v.w)=\frac{du}{dx}v.w+u.\frac{dv}{dx}+u.v\frac{dw}{dx} in two ways-first by repeated application of product rule,second by logarithmic differentiation.

Answer

The correct answer is dydx=dudx.v.w+u.dvdx.w+u.v.dwdx∴\frac{dy}{dx}=\frac{du}{dx}.v.w+u.\frac{dv}{dx}.w+u.v.\frac{dw}{dx}
Let y=u.v.w=u.(v.w)y=u.v.w=u.(v.w)
By applying product rule, we obtain
dydx=dudx.(v.w)+u.ddx(v.w)\frac{dy}{dx}=\frac{du}{dx}.(v.w)+u.\frac{d}{dx}(v.w)
dydx=dudxv.w+u[dvdx.w+v.dwdx]⇒\frac{dy}{dx}=\frac{du}{dx}v.w+u[\frac{dv}{dx}.w+v.\frac{dw}{dx}] (Again applying product rule)
dydx=dudx.v.w+u.dvdx.w+u.v.dwdx⇒\frac{dy}{dx}=\frac{du}{dx}.v.w+u.\frac{dv}{dx}.w+u.v.\frac{dw}{dx}
By taking logarithm on both sides of the equation y=u.v.wy=u.v.w, we obtain
logy=logu+logv+logwlogy=logu+logv+logw
Differentiating both sides with respect to xx, we obtain
1ydydx=ddx(logu)+ddx(logv)+ddx(logw)\frac{1}{y}\frac{dy}{dx}=\frac{d}{dx}(logu)+\frac{d}{dx}(logv)+\frac{d}{dx}(logw)
1y.dydx=1ududx+1vdvdx+1wdwdx⇒\frac{1}{y}.\frac{dy}{dx}=\frac{1}{u}\frac{du}{dx}+\frac{1}{v}\frac{dv}{dx}+\frac{1}{w}\frac{dw}{dx}
dydx=y(1ududx+1vdvdx+1wdwdx)⇒\frac{dy}{dx}=y(\frac{1}{u}\frac{du}{dx}+\frac{1}{v}\frac{dv}{dx}+\frac{1}{w}\frac{dw}{dx})
dydx=u.v.w(1ududx+1vdvdx+1wdwdx)⇒\frac{dy}{dx}=u.v.w(\frac{1}{u}\frac{du}{dx}+\frac{1}{v}\frac{dv}{dx}+\frac{1}{w}\frac{dw}{dx})
dydx=dudx.v.w+u.dvdx.w+u.v.dwdx∴\frac{dy}{dx}=\frac{du}{dx}.v.w+u.\frac{dv}{dx}.w+u.v.\frac{dw}{dx}