Question
Mathematics Question on Continuity and differentiability
If u,v and w are functions of x,then show that
dxd(u.v.w)=dxduv.w+u.dxdv+u.vdxdw in two ways-first by repeated application of product rule,second by logarithmic differentiation.
The correct answer is ∴dxdy=dxdu.v.w+u.dxdv.w+u.v.dxdw
Let y=u.v.w=u.(v.w)
By applying product rule, we obtain
dxdy=dxdu.(v.w)+u.dxd(v.w)
⇒dxdy=dxduv.w+u[dxdv.w+v.dxdw] (Again applying product rule)
⇒dxdy=dxdu.v.w+u.dxdv.w+u.v.dxdw
By taking logarithm on both sides of the equation y=u.v.w, we obtain
logy=logu+logv+logw
Differentiating both sides with respect to x, we obtain
y1dxdy=dxd(logu)+dxd(logv)+dxd(logw)
⇒y1.dxdy=u1dxdu+v1dxdv+w1dxdw
⇒dxdy=y(u1dxdu+v1dxdv+w1dxdw)
⇒dxdy=u.v.w(u1dxdu+v1dxdv+w1dxdw)
∴dxdy=dxdu.v.w+u.dxdv.w+u.v.dxdw