Solveeit Logo

Question

Question: If \(u = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + ...

If u=a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θu = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } , then the difference between the maximum and minimum values of u2{u^2} is given by:
A. 2(a2+b2)2({a^2} + {b^2})
B. 2a2+b22\sqrt {{a^2} + {b^2}}
C. (a+b)2{(a + b)^2}
D. (ab)2{(a - b)^2}

Explanation

Solution

In order to solve this problem we need to know about quite a few topics, as the solution of the problem deals with miscellaneous concepts in mathematics. We need to be familiar with differentiation and trigonometry and also with finding the minimum and maximum values of a given function. Here, given an expression, we are asked to find the difference of the square of maximum and minimum values of the given expression.

Complete step-by-step solution:
In order to find the maximum and minimum value we differentiate the given expression which is :
u=a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θ\Rightarrow u = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta }
Differentiating the expression w.r.t θ\theta , as given below:
dudθ=(2a2cosθ(sinθ)+2b2sinθcosθ)2a2cos2θ+b2sin2θ+(2a2sinθcosθ+2b2cosθ(sinθ))2a2sin2θ+b2cos2θ\Rightarrow \dfrac{{du}}{{d\theta }} = \dfrac{{(2{a^2}\cos \theta ( - \sin \theta ) + 2{b^2}\sin \theta \cos \theta )}}{{2\sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } }} + \dfrac{{(2{a^2}\sin \theta \cos \theta + 2{b^2}\cos \theta ( - \sin \theta ))}}{{2\sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } }}
As the differentiation of sinθ\sin \theta is cosθ\cos \theta , whereas the derivative of cosθ\cos \theta is sinθ\sin \theta , as given below:
dudθ=2a2sinθcosθ+2b2sinθcosθ2a2cos2θ+b2sin2θ+2a2sinθcosθ2b2sinθcosθ2a2sin2θ+b2cos2θ\Rightarrow \dfrac{{du}}{{d\theta }} = \dfrac{{ - 2{a^2}\sin \theta \cos \theta + 2{b^2}\sin \theta \cos \theta }}{{2\sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } }} + \dfrac{{2{a^2}\sin \theta \cos \theta - 2{b^2}\sin \theta \cos \theta }}{{2\sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } }}
dudθ=2sinθcosθ(b2a2)2a2cos2θ+b2sin2θ+2sinθcosθ(a2b2)2a2sin2θ+b2cos2θ\Rightarrow \dfrac{{du}}{{d\theta }} = \dfrac{{2\sin \theta \cos \theta ({b^2} - {a^2})}}{{2\sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } }} + \dfrac{{2\sin \theta \cos \theta ({a^2} - {b^2})}}{{2\sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } }}
Dividing the whole expression by 2, as given below:
dudθ=sinθcosθ(b2a2)a2cos2θ+b2sin2θ+sinθcosθ(a2b2)a2sin2θ+b2cos2θ\Rightarrow \dfrac{{du}}{{d\theta }} = \dfrac{{\sin \theta \cos \theta ({b^2} - {a^2})}}{{\sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } }} + \dfrac{{\sin \theta \cos \theta ({a^2} - {b^2})}}{{\sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } }}
Now the differentiated expression is equated to zero, in order to find the maximum value of θ\theta , as given,
dudθ=0\Rightarrow \dfrac{{du}}{{d\theta }} = 0
sinθcosθ(b2a2)a2cos2θ+b2sin2θ+sinθcosθ(a2b2)a2sin2θ+b2cos2θ=0\Rightarrow \dfrac{{\sin \theta \cos \theta ({b^2} - {a^2})}}{{\sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } }} + \dfrac{{\sin \theta \cos \theta ({a^2} - {b^2})}}{{\sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } }} = 0
sinθcosθ(b2a2)a2cos2θ+b2sin2θ=sinθcosθ(b2a2)a2sin2θ+b2cos2θ\Rightarrow \dfrac{{\sin \theta \cos \theta ({b^2} - {a^2})}}{{\sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } }} = \dfrac{{\sin \theta \cos \theta ({b^2} - {a^2})}}{{\sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } }}
Here sinθcosθ(b2a2)\sin \theta \cos \theta ({b^2} - {a^2}) gets cancelled on both sides, as given below:
1a2cos2θ+b2sin2θ=1a2sin2θ+b2cos2θ\Rightarrow \dfrac{1}{{\sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } }} = \dfrac{1}{{\sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } }}
By equating the denominators, as given below:
a2cos2θ+b2sin2θ=a2sin2θ+b2cos2θ\Rightarrow \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } = \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta }
Squaring on both sides of the equation as given below:
a2cos2θ+b2sin2θ=a2sin2θ+b2cos2θ\Rightarrow {a^2}{\cos ^2}\theta + {b^2}{\sin ^2}\theta = {a^2}{\sin ^2}\theta + {b^2}{\cos ^2}\theta
Rearranging or grouping the like terms together, as given below:
a2cos2θb2cos2θ=a2sin2θb2sin2θ\Rightarrow {a^2}{\cos ^2}\theta - {b^2}{\cos ^2}\theta = {a^2}{\sin ^2}\theta - {b^2}{\sin ^2}\theta
(a2b2)cos2θ=(a2b2)sin2θ\Rightarrow ({a^2} - {b^2}){\cos ^2}\theta = ({a^2} - {b^2}){\sin ^2}\theta
Here (a2b2)({a^2} - {b^2}) term on both sides of the equation, as given below:
cos2θ=sin2θ\Rightarrow {\cos ^2}\theta = {\sin ^2}\theta
sin2θcos2θ=1\Rightarrow \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = 1
tan2θ=1\Rightarrow {\tan ^2}\theta = 1
tanθ=±1\therefore \tan \theta = \pm 1
θ=45\Rightarrow \theta = {45^ \circ }, θ=135\theta = {135^ \circ }
Substituting either of the above values in the u=a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θu = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } , gives the same maximum value of uu, which is umax{u_{\max }}, substitution as given below:
We know that cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} and sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}, substituting these values in the expression below:
umax=a2(12)2+b2(12)2+a2(12)2+b2(12)2\Rightarrow {u_{\max }} = \sqrt {{a^2}{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {b^2}{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} + \sqrt {{a^2}{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {b^2}{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}}
umax=a2(12)+b2(12)+a2(12)+b2(12)\Rightarrow {u_{\max }} = \sqrt {{a^2}\left( {\dfrac{1}{2}} \right) + {b^2}\left( {\dfrac{1}{2}} \right)} + \sqrt {{a^2}\left( {\dfrac{1}{2}} \right) + {b^2}\left( {\dfrac{1}{2}} \right)}
umax=a2+b22+a2+b22\Rightarrow {u_{\max }} = \sqrt {\dfrac{{{a^2} + {b^2}}}{2}} + \sqrt {\dfrac{{{a^2} + {b^2}}}{2}}
Adding the two similar square roots, which gives as given below:
umax=2a2+b22\Rightarrow {u_{\max }} = 2\sqrt {\dfrac{{{a^2} + {b^2}}}{2}}
umax=2(a2+b2)\Rightarrow {u_{\max }} = \sqrt {2({a^2} + {b^2})}
umax=2(a2+b2)\therefore {u_{\max }} = \sqrt {2({a^2} + {b^2})}
Now the expression u=a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θu = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } is minimum at θ=0\theta = {0^ \circ }or 90{90^ \circ }, when either of these values of θ\theta are substituted the minimum value of uuis obtained which is umin{u_{\min }}:
We know that cos0=1\cos {0^ \circ } = 1 and sin0=0\sin {0^ \circ } = 0, substituting these values, as given below:
umin=a2(1)2+b2(0)+a2(0)+b2(1)2\Rightarrow {u_{min}} = \sqrt {{a^2}{{(1)}^2} + {b^2}(0)} + \sqrt {{a^2}(0) + {b^2}{{(1)}^2}}
umin=a2+b2\Rightarrow {u_{min}} = \sqrt {{a^2}} + \sqrt {{b^2}}
umin=a+b\Rightarrow {u_{min}} = a + b
umin=a+b\therefore {u_{min}} = a + b
Now calculating the difference between umax2u_{\max }^2 and umin2u_{\min }^2, as given below:
umax2=(2(a2+b2))2\Rightarrow u_{\max }^2 = {\left( {\sqrt {2({a^2} + {b^2})} } \right)^2}
umax2=2(a2+b2)\Rightarrow u_{\max }^2 = 2({a^2} + {b^2})
umin2=(a+b)2\Rightarrow u_{\min }^2 = {(a + b)^2}
umax2umin2=2(a2+b2)(a+b)2\therefore u_{\max }^2 - u_{\min }^2 = 2({a^2} + {b^2}) - {(a + b)^2}
On expanding the expression, as given below:
umax2umin2=2a2+2b2(a2+b2+2ab)\Rightarrow u_{\max }^2 - u_{\min }^2 = 2{a^2} + 2{b^2} - ({a^2} + {b^2} + 2ab)
umax2umin2=a2+b22ab\Rightarrow u_{\max }^2 - u_{\min }^2 = {a^2} + {b^2} - 2ab
umax2umin2=(ab)2\therefore u_{\max }^2 - u_{\min }^2 = {(a - b)^2}
The difference between the maximum and minimum values of u2{u^2} is umax2umin2=(ab)2u_{\max }^2 - u_{\min }^2 = {(a - b)^2}.
Option D is the correct answer.

Note: While solving this problem, please note that while calculating the maximum value of u, in that theta had two solutions 45 and 135 degrees, but as there is a square present for the trigonometric functions in the u expression, so the final value of the u expression will be the same. Similarly while finding the minimum value of u, theta had two solutions either 0 or 90 degrees, but as there is a square present for the trigonometric functions in the u expression, so the final value of the u expression will be the same.