Question
Question: If \[u = {\sin ^{ - 1}}\left( {\dfrac{x}{y}} \right) + {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\]...
If u=sin−1(yx)+tan−1(xy), show that xdydu+ydydu=0.
Solution
We are given that u=sin−1(yx)+tan−1(xy) and we need to find the value of xdydu+ydydu . We also know the formulas that, dxd(sin−1x)=1−x21 and dxd(tan−1x)=1+x21 . We will use this formula and differentiate it with respect to x and y.And then, we will add both the values we will get from this to get the final output.
Complete step by step answer:
Given that,
u=sin−1(yx)+tan−1(xy) --- (1)
We know that the formulas,
dxd(sin−1x)=1−x21 and dxd(tan−1x)=1+x21
Now we will use this formula and differentiating with respect to x and y.
First,
We will use partial differentiate with respect to x, we will get,
⇒dxdu=1−y2x21×y1+1+x2y21×(−x2y)
On evaluating this, we will get,
⇒dxdu=y2y2−x21×y1−x2x2+y21×(x2y)
⇒dxdu=y2−x2y×y1−x2+y2x2×(x2y)
⇒dxdu=y2−x21−x2+y21×y
⇒dxdu=y2−x21−x2+y2y
Multiply by ‘x’ on both the sides, we will get,
⇒xdxdu=y2−x2x−x2+y2xy
Second,
We will use partial differentiate with respect to y, we will get,
⇒dydu=1−y2x21×(−y2x)+1+x2y21×(x1)
⇒dydu=y2y2−x21×(−y2x)+x2x2+y21×(x1)
⇒dydu=y2−x2y×(−y2x)+x2+y2x2×(x1)
⇒dydu=y2−x21×(−yx)+x2+y2x
⇒dydu=−y2−x2x+x2+y2x
Rearrange this, we will get,
⇒dydu=x2+y2x−y2−x21×(yx)
Multiply by ‘y’ on both the sides, we will get,
⇒ydydu=x2+y2xy−y2−x2y×(yx)
⇒ydydu=x2+y2xy−y2−x2x
Now,
xdydu+ydydu=y2−x2x−x2+y2xy+x2+y2xy−y2−x2x
∴xdydu+ydydu=0
Hence, for given u=sin−1(yx)+tan−1(xy) the value of xdydu+ydydu=0.
Note: Another Method:Euler’s theorem for the homogeneous equation of degree ‘n’ with ‘x’ and ‘y’ as variables is as: xdydu+ydydu=nu
For given,
u=sin−1(yx)+tan−1(xy)
⇒u=sin−1xy1+tan−1(xy)
⇒u=x0f(xy)
Here, u is a homogeneous function with degree 0.
Also, n = 0
Substituting the value of n in the formula, we will get,
xdydu+ydydu=nu
⇒xdydu+ydydu=0(u)
∴xdydu+ydydu=0