Solveeit Logo

Question

Question: If \[u = {\sin ^{ - 1}}\left( {\dfrac{x}{y}} \right) + {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\]...

If u=sin1(xy)+tan1(yx)u = {\sin ^{ - 1}}\left( {\dfrac{x}{y}} \right) + {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right), show that xdudy+ydudy=0x\dfrac{{du}}{{dy}} + y\dfrac{{du}}{{dy}} = 0.

Explanation

Solution

We are given that u=sin1(xy)+tan1(yx)u = {\sin ^{ - 1}}\left( {\dfrac{x}{y}} \right) + {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) and we need to find the value of xdudy+ydudyx\dfrac{{du}}{{dy}} + y\dfrac{{du}}{{dy}} . We also know the formulas that, ddx(sin1x)=11x2\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }} and ddx(tan1x)=11+x2\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}} . We will use this formula and differentiate it with respect to x and y.And then, we will add both the values we will get from this to get the final output.

Complete step by step answer:
Given that,
u=sin1(xy)+tan1(yx)u = {\sin ^{ - 1}}\left( {\dfrac{x}{y}} \right) + {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) --- (1)
We know that the formulas,
ddx(sin1x)=11x2\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }} and ddx(tan1x)=11+x2\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}}

Now we will use this formula and differentiating with respect to x and y.
First,
We will use partial differentiate with respect to x, we will get,
dudx=11x2y2×1y+11+y2x2×(yx2)\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\sqrt {1 - \dfrac{{{x^2}}}{{{y^2}}}} }} \times \dfrac{1}{y} + \dfrac{1}{{1 + \dfrac{{{y^2}}}{{{x^2}}}}} \times \left( { - \dfrac{y}{{{x^2}}}} \right)
On evaluating this, we will get,
dudx=1y2x2y2×1y1x2+y2x2×(yx2)\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\sqrt {\dfrac{{{y^2} - {x^2}}}{{{y^2}}}} }} \times \dfrac{1}{y} - \dfrac{1}{{\dfrac{{{x^2} + {y^2}}}{{{x^2}}}}} \times \left( {\dfrac{y}{{{x^2}}}} \right)
dudx=yy2x2×1yx2x2+y2×(yx2)\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{y}{{\sqrt {{y^2} - {x^2}} }} \times \dfrac{1}{y} - \dfrac{{{x^2}}}{{{x^2} + {y^2}}} \times \left( {\dfrac{y}{{{x^2}}}} \right)
dudx=1y2x21x2+y2×y\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\sqrt {{y^2} - {x^2}} }} - \dfrac{1}{{{x^2} + {y^2}}} \times y
dudx=1y2x2yx2+y2\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\sqrt {{y^2} - {x^2}} }} - \dfrac{y}{{{x^2} + {y^2}}}
Multiply by ‘x’ on both the sides, we will get,
xdudx=xy2x2xyx2+y2\Rightarrow x\dfrac{{du}}{{dx}} = \dfrac{x}{{\sqrt {{y^2} - {x^2}} }} - \dfrac{{xy}}{{{x^2} + {y^2}}}

Second,
We will use partial differentiate with respect to y, we will get,
dudy=11x2y2×(xy2)+11+y2x2×(1x)\Rightarrow \dfrac{{du}}{{dy}} = \dfrac{1}{{\sqrt {1 - \dfrac{{{x^2}}}{{{y^2}}}} }} \times \left( { - \dfrac{x}{{{y^2}}}} \right) + \dfrac{1}{{1 + \dfrac{{{y^2}}}{{{x^2}}}}} \times \left( {\dfrac{1}{x}} \right)
dudy=1y2x2y2×(xy2)+1x2+y2x2×(1x)\Rightarrow \dfrac{{du}}{{dy}} = \dfrac{1}{{\sqrt {\dfrac{{{y^2} - {x^2}}}{{{y^2}}}} }} \times \left( { - \dfrac{x}{{{y^2}}}} \right) + \dfrac{1}{{\dfrac{{{x^2} + {y^2}}}{{{x^2}}}}} \times \left( {\dfrac{1}{x}} \right)
dudy=yy2x2×(xy2)+x2x2+y2×(1x)\Rightarrow \dfrac{{du}}{{dy}} = \dfrac{y}{{\sqrt {{y^2} - {x^2}} }} \times \left( { - \dfrac{x}{{{y^2}}}} \right) + \dfrac{{{x^2}}}{{{x^2} + {y^2}}} \times \left( {\dfrac{1}{x}} \right)
dudy=1y2x2×(xy)+xx2+y2\Rightarrow \dfrac{{du}}{{dy}} = \dfrac{1}{{\sqrt {{y^2} - {x^2}} }} \times \left( { - \dfrac{x}{y}} \right) + \dfrac{x}{{{x^2} + {y^2}}}
dudy=xy2x2+xx2+y2\Rightarrow \dfrac{{du}}{{dy}} = - \dfrac{x}{{\sqrt {{y^2} - {x^2}} }} + \dfrac{x}{{{x^2} + {y^2}}}
Rearrange this, we will get,
dudy=xx2+y21y2x2×(xy)\Rightarrow \dfrac{{du}}{{dy}} = \dfrac{x}{{{x^2} + {y^2}}} - \dfrac{1}{{\sqrt {{y^2} - {x^2}} }} \times \left( {\dfrac{x}{y}} \right)
Multiply by ‘y’ on both the sides, we will get,
ydudy=xyx2+y2yy2x2×(xy)\Rightarrow y\dfrac{{du}}{{dy}} = \dfrac{{xy}}{{{x^2} + {y^2}}} - \dfrac{y}{{\sqrt {{y^2} - {x^2}} }} \times \left( {\dfrac{x}{y}} \right)
ydudy=xyx2+y2xy2x2\Rightarrow y\dfrac{{du}}{{dy}} = \dfrac{{xy}}{{{x^2} + {y^2}}} - \dfrac{x}{{\sqrt {{y^2} - {x^2}} }}
Now,
xdudy+ydudy=xy2x2xyx2+y2+xyx2+y2xy2x2x\dfrac{{du}}{{dy}} + y\dfrac{{du}}{{dy}}= \dfrac{x}{{\sqrt {{y^2} - {x^2}} }} - \dfrac{{xy}}{{{x^2} + {y^2}}} + \dfrac{{xy}}{{{x^2} + {y^2}}} - \dfrac{x}{{\sqrt {{y^2} - {x^2}} }}
xdudy+ydudy=0\therefore x\dfrac{{du}}{{dy}} + y\dfrac{{du}}{{dy}}= 0

Hence, for given u=sin1(xy)+tan1(yx)u = {\sin ^{ - 1}}\left( {\dfrac{x}{y}} \right) + {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) the value of xdudy+ydudy=0x\dfrac{{du}}{{dy}} + y\dfrac{{du}}{{dy}} = 0.

Note: Another Method:Euler’s theorem for the homogeneous equation of degree ‘n’ with ‘x’ and ‘y’ as variables is as: xdudy+ydudy=nux\dfrac{{du}}{{dy}} + y\dfrac{{du}}{{dy}} = nu
For given,
u=sin1(xy)+tan1(yx)u = {\sin ^{ - 1}}\left( {\dfrac{x}{y}} \right) + {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)
u=sin1(1yx)+tan1(yx)\Rightarrow u= {\sin ^{ - 1}}\left( {\dfrac{1}{{\dfrac{y}{x}}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)
u=x0f(yx)\Rightarrow u = {x^0}f\left( {\dfrac{y}{x}} \right)
Here, u is a homogeneous function with degree 0.
Also, n = 0
Substituting the value of n in the formula, we will get,
xdudy+ydudy=nux\dfrac{{du}}{{dy}} + y\dfrac{{du}}{{dy}} = nu
xdudy+ydudy=0(u)\Rightarrow x\dfrac{{du}}{{dy}} + y\dfrac{{du}}{{dy}} = 0(u)
xdudy+ydudy=0\therefore x\dfrac{{du}}{{dy}} + y\dfrac{{du}}{{dy}} = 0