Solveeit Logo

Question

Question: If \(u = \log{\tan\left( \frac{\pi}{4} + \frac{x}{2} \right)}\),then the value of \({\tan h}\frac{u}...

If u=logtan(π4+x2)u = \log{\tan\left( \frac{\pi}{4} + \frac{x}{2} \right)},then the value of tanhu2{\tan h}\frac{u}{2} is.

A

cotx2\cot\frac{x}{2}

B

cotx2- \cot\frac{x}{2}

C

tanx2- \tan\frac{x}{2}

D

tanx2\tan\frac{x}{2}

Answer

tanx2\tan\frac{x}{2}

Explanation

Solution

u=logtan(π4+x2)=log(1+tanx21tanx2)u = \log{\tan\left( \frac{\pi}{4} + \frac{x}{2} \right)} = \log\left( \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}} \right)

=2tanh1(tanx2)= 2\tanh^{- 1}\left( \tan\frac{x}{2} \right)tanh (u2)=tanx2{\tan h}\ \left( \frac{u}{2} \right) = \tan\frac{x}{2}.