Solveeit Logo

Question

Question: If \(u = {logtan}\left( \frac{\pi}{4} + \frac{x}{2} \right),\) then \(\cos ⥂ hu\) is equal to...

If u=logtan(π4+x2),u = {logtan}\left( \frac{\pi}{4} + \frac{x}{2} \right), then coshu\cos ⥂ hu is equal to

A

secx\sec x

B

cosecxc\text{osec}x

C

tanx\tan x

D

sinx\sin x

Answer

secx\sec x

Explanation

Solution

u=logtan(π4+x2)u = {logtan}\left( \frac{\pi}{4} + \frac{x}{2} \right)\therefore eu1=1+tanx21tanx2\frac{e^{u}}{1} = \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}}

coshu=eu+eu2=e2u+12eu=(1+tanx21tanx2)2+12.(1+tanx21tanx2)\cosh u = \frac{e^{u} + e^{- u}}{2} = \frac{e^{2u} + 1}{2e^{u}} = \frac{\left( \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}} \right)^{2} + 1}{2.\left( \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}} \right)}=2[1+tan2x2]2(1tanx2)(1+tanx2)=1+tan2π21tan2π2\frac{2\left\lbrack 1 + \tan^{2}\frac{x}{2} \right\rbrack}{2\left( 1 - \tan\frac{x}{2} \right)\left( 1 + \tan\frac{x}{2} \right)} = \frac{1 + \tan^{2}\frac{\pi}{2}}{1 - \tan^{2}\frac{\pi}{2}}= 11tan2π21+tan2π2=1cosx=secx\frac{1}{\frac{1 - \tan^{2}\frac{\pi}{2}}{1 + \tan^{2}\frac{\pi}{2}}} = \frac{1}{\cos x} = \sec x