Question
Question: If \(u = \int_{}^{}e^{ax}\cos bxdx\) and\(v = \int_{}^{}e^{ax}\sin bxdx,\) then \[(a^{2} + b^{2})(u...
If u=∫eaxcosbxdx andv=∫eaxsinbxdx, then
(a2+b2)(u2+v2)=
A
2eax
B
(a2+b2)e2ax
C
e2ax
D
(a2−b2)e2ax
Answer
e2ax
Explanation
Solution
u=∫eaxcosbxdx =eaxbsinbx−ba∫eax.bxdx=beaxsinbx−bav⇒bu+av=eaxsinbx ......(i)
Similarly, bv−au=−eaxcosbx .....(ii)
Squaring (i) and (ii) and adding. We get,
(a2+b2)(u2+v2)=e2ax.