Solveeit Logo

Question

Question: If u = f(x<sup>2</sup>), v = g(x<sup>3</sup>) ; f ′(x) = sin x, g ′(x) = cos x, then \(\frac{du}{dv}...

If u = f(x2), v = g(x3) ; f ′(x) = sin x, g ′(x) = cos x, then dudv\frac{du}{dv} =

A

2sin(x2)3x(cosx3)\frac{2\sin(x^{2})}{3x(\cos x^{3})}

B

23x\frac{2}{3x} tan x

C

23xsin2xcos3x\frac{2}{3x}\frac{\sin^{2}x}{\cos^{3}x}

D

None

Answer

2sin(x2)3x(cosx3)\frac{2\sin(x^{2})}{3x(\cos x^{3})}

Explanation

Solution

dudv=du/dxdv/dx\frac{du}{dv} = \frac{du/dx}{dv/dx} =f(x2).2x9(x3).3x2=sinx2.2xcosx3.3x2\frac{f'(x^{2}).2x}{9'(x^{3}).3x^{2}} = \frac{\sin x^{2}.2x}{\cos x^{3}.3x^{2}}= 2sinx23xcosx3\frac{2\sin x^{2}}{3x\cos x^{3}}