Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If u=f(x2),v=g(x3),f(x)=sinxu = f(x^2) , v = g(x^3) , f'(x) = \sin x and g(x)=cosx,g'(x) = \cos x, then dudv=\frac{du}{dv} =

A

3xcosx32sinx2\frac{3x \cos x^{3}}{2 \sin x^{2}}

B

2sinx23xcosx3\frac{2 \sin x^{2}}{3x \cos x^{3}}

C

2sinx23cosx3\frac{2 \sin x^{2}}{3 \cos x^{3}}

D

3xsinx22cosx3\frac{3x \sin x^{2}}{{2} cosx^{3}}

Answer

2sinx23xcosx3\frac{2 \sin x^{2}}{3x \cos x^{3}}

Explanation

Solution

u=f(x2),v=g(x3)u =f\left(x^2\right) , v =g\left(x^{3}\right)
f(x)=sinx,g(x)=cosxf'\left(x\right) = \sin x, g'\left(x\right) =\cos x
dudx=f(x2).2x\frac{du}{dx} = f'\left(x^{2}\right).2x and dvdx=g(x3).3x2\frac{dv}{dx} =g'\left(x^{3}\right) .3x^{2}
dudv=dudx.dxdv=f(x2).2xg(x3).3x2=23xsinx2cosx3\frac{du}{dv} =\frac{du}{dx}. \frac{dx}{dv} = \frac{f'\left(x^{2}\right).2x}{g'\left(x^{3}\right).3x^{2}} = \frac{2}{3x} \frac{ \sin x^{2}}{\cos x^{3}}