Solveeit Logo

Question

Question: If u = f(r), where \[{{r}^{2}}={{x}^{2}}+{{y}^{2}}\] then \[\left( \dfrac{{{\partial }^{2}}u}{\parti...

If u = f(r), where r2=x2+y2{{r}^{2}}={{x}^{2}}+{{y}^{2}} then (2ux2+2uy2)=\left( \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}} \right)=
(a) f(r)\left( \text{a} \right)\text{ }{{f}^{'}}\left( r \right)
(b) f(r)+f(r)\left( \text{b} \right)\text{ }{{f}^{''}}\left( r \right)+{{f}^{'}}\left( r \right)
(c) f(r)+1rf(r)\left( \text{c} \right)\text{ }{{f}^{''}}\left( r \right)+\dfrac{1}{r}{{f}^{'}}\left( r \right)
(d) f(r)+rf(r)\left( \text{d} \right)\text{ }{{f}^{'}}\left( r \right)+r{{f}^{'}}\left( r \right)

Explanation

Solution

Hint: To solve the given question, we will first find out about the operation \partial and what it does when it is applied on some variable or function. Then, we will find the value of ux\dfrac{\partial u}{\partial x} by differentiating u = f(r) and we will use ux=ur×rx.\dfrac{\partial u}{\partial x}=\dfrac{\partial u}{\partial r}\times \dfrac{\partial r}{\partial x}. After getting the value of ux,\dfrac{\partial u}{\partial x}, we will differentiate it once again and we will find 2ux2\dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}} in the terms of x, r, ur\dfrac{\partial u}{\partial r} and 2ur2.\dfrac{{{\partial }^{2}}u}{\partial {{r}^{2}}}. Similarly, we will find the value of 2uy2\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}} and then we will add 2ux2\dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}} and 2uy2\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}} to get the final answer.

Complete step-by-step answer:
Before we solve the given question, we must know what is \partial operator. \partial operator is the operator for partial differentiation of a variable with respect to another variable where we treat the other variables as constant. Now, we are given that,
u=f(r).....(i)u=f\left( r \right).....\left( i \right)
r2=x2+y2.....(ii){{r}^{2}}={{x}^{2}}+{{y}^{2}}.....\left( ii \right)
Now, we will differentiate (i) with respect to x on both sides. Thus, we will get,
ux=f(r)x......(iii)\dfrac{\partial u}{\partial x}=\dfrac{\partial f\left( r \right)}{\partial x}......\left( iii \right)
We can write (iii) also in the following manner,
ux=f(r)x×rr\Rightarrow \dfrac{\partial u}{\partial x}=\dfrac{\partial f\left( r \right)}{\partial x}\times \dfrac{\partial r}{\partial r}
ux=f(r)r×rx\Rightarrow \dfrac{\partial u}{\partial x}=\dfrac{\partial f\left( r \right)}{\partial r}\times \dfrac{\partial r}{\partial x}
We will write f(r)r\dfrac{\partial f\left( r \right)}{\partial r} as f’(r) in the above equation. Thus, we will get,
ux=f(r)×rx......(iv)\Rightarrow \dfrac{\partial u}{\partial x}={{f}^{'}}\left( r \right)\times \dfrac{\partial r}{\partial x}......\left( iv \right)
Now, we will partially differentiate (ii) with respect to x, treating y as constant. Thus, we will get,
x(r2)=x(x2)+x(y2)\dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)=\dfrac{\partial }{\partial x}\left( {{x}^{2}} \right)+\dfrac{\partial }{\partial x}\left( {{y}^{2}} \right)
Now, the differentiation of x2{{x}^{2}} is 2x and y2{{y}^{2}} is zero because y is constant and differentiation of constant is zero. Thus, we will get,
x(r2)=2x+0\dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)=2x+0
x(r2)=2x\Rightarrow \dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)=2x
Multiplying numerator and denominator by r\partial r on LHS, we get,
x(r2)×rr=2x\Rightarrow \dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)\times \dfrac{\partial r}{\partial r}=2x
r(r2)×rx=2x\Rightarrow \dfrac{\partial }{\partial r}\left( {{r}^{2}} \right)\times \dfrac{\partial r}{\partial x}=2x
2r×rx=2x\Rightarrow 2r\times \dfrac{\partial r}{\partial x}=2x
rrx=x\Rightarrow \dfrac{r\partial r}{\partial x}=x
rx=xr.....(v)\Rightarrow \dfrac{\partial r}{\partial x}=\dfrac{x}{r}.....\left( v \right)
Now, we will put the value of rx\dfrac{\partial r}{\partial x} from (v) to (iv). Thus, we will get,
ux=f(r).xr.....(vi)\Rightarrow \dfrac{\partial u}{\partial x}={{f}^{'}}\left( r \right).\dfrac{x}{r}.....\left( vi \right)
Now, we will differentiate (vi) with respect to x again. Thus, we will get,
x(ux)=x[f(r).xr]\dfrac{\partial }{\partial x}\left( \dfrac{\partial u}{\partial x} \right)=\dfrac{\partial }{\partial x}\left[ {{f}^{'}}\left( r \right).\dfrac{x}{r} \right]
2ux2=x[f(r).xr]\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\dfrac{\partial }{\partial x}\left[ {{f}^{'}}\left( r \right).\dfrac{x}{r} \right]
Now, we will use the product rule of differentiation in the above equation. This rule says that,
dda[P(a).Q(a)]=Q(a).dda[P(a)]+P(a).dda[Q(a)]\dfrac{d}{da}\left[ P\left( a \right).Q\left( a \right) \right]=Q\left( a \right).\dfrac{d}{da}\left[ P\left( a \right) \right]+P\left( a \right).\dfrac{d}{da}\left[ Q\left( a \right) \right]
Thus, we will get,
2ux2=xr[x(f(r))]+f(r)[x(xr)]......(vii)\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\dfrac{x}{r}\left[ \dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right) \right]+{{f}^{'}}\left( r \right)\left[ \dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right) \right]......\left( vii \right)
Now, we will find the value of x(f(r)).\dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right). For this, we will use the chain rule of differentiation. According to this rule, we have,
ddx[A(B(x))]=A(B(x))×B(x)\dfrac{d}{dx}\left[ A\left( B\left( x \right) \right) \right]={{A}^{'}}\left( B\left( x \right) \right)\times {{B}^{'}}\left( x \right)
Thus, we will get,
x(f(r))=f(r).rx\dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right)={{f}^{''}}\left( r \right).\dfrac{\partial r}{\partial x}
Now, we will put the value of rx\dfrac{\partial r}{\partial x} from (v) to the above equation. Thus, we will get,
x(f(r))=f(r).xr......(viii)\dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right)={{f}^{''}}\left( r \right).\dfrac{x}{r}......\left( viii \right)
Now, we will find the value of x(xr).\dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right). For this, we will use the division rule of differentiation. According to this rule, we have,
ddx(AB)=B.dAA.dBB2\dfrac{d}{dx}\left( \dfrac{A}{B} \right)=\dfrac{B.dA-A.dB}{{{B}^{2}}}
Thus, we will get,
x(xr)=r.(xx)x.(rx)r2\dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right)=\dfrac{r.\left( \dfrac{\partial x}{\partial x} \right)-x.\left( \dfrac{\partial r}{\partial x} \right)}{{{r}^{2}}}
x(xr)=rx(rx)r2\Rightarrow \dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right)=\dfrac{r-x\left( \dfrac{\partial r}{\partial x} \right)}{{{r}^{2}}}
Now, we will put the value of ru\dfrac{\partial r}{\partial u} from (v) to the above equation. Thus, we will get,
x(xr)=rx(xr)r2=r2x2r3......(ix)\Rightarrow \dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right)=\dfrac{r-x\left( \dfrac{x}{r} \right)}{{{r}^{2}}}=\dfrac{{{r}^{2}}-{{x}^{2}}}{{{r}^{3}}}......\left( ix \right)
From (vii), (viii) and (ix), we have,
2ux2=xr[f(r).xr]+f(r)[r2x2r3]\dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\dfrac{x}{r}\left[ {{f}^{''}}\left( r \right).\dfrac{x}{r} \right]+{{f}^{'}}\left( r \right)\left[ \dfrac{{{r}^{2}}-{{x}^{2}}}{{{r}^{3}}} \right]
2ux2=f(r)x2r2+f(r).(r2x2)r3......(x)\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}={{f}^{''}}\left( r \right)\dfrac{{{x}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{x}^{2}} \right)}{{{r}^{3}}}......\left( x \right)
Similarly,
2uy2=f(r).y2r2+f(r).(r2y2)r3......(xi)\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right).\dfrac{{{y}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{y}^{2}} \right)}{{{r}^{3}}}......\left( xi \right)
On adding (x) and (xi), we get,
2ux2+2uy2=f(r).x2r2+f(r).(r2x2)r3+f(r).y2r2+f(r).(r2y2)r3\dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right).\dfrac{{{x}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{x}^{2}} \right)}{{{r}^{3}}}+{{f}^{''}}\left( r \right).\dfrac{{{y}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{y}^{2}} \right)}{{{r}^{3}}}
2ux2+2uy2=f(r)[x2r2+y2r2]+f(r)r3[r2x2+r2y2]\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)\left[ \dfrac{{{x}^{2}}}{{{r}^{2}}}+\dfrac{{{y}^{2}}}{{{r}^{2}}} \right]+\dfrac{{{f}^{'}}\left( r \right)}{{{r}^{3}}}\left[ {{r}^{2}}-{{x}^{2}}+{{r}^{2}}-{{y}^{2}} \right]
2ux2+2uy2=f(r)[r2r2]+f(r)r3[2r2r2]\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)\left[ \dfrac{{{r}^{2}}}{{{r}^{2}}} \right]+\dfrac{{{f}^{'}}\left( r \right)}{{{r}^{3}}}\left[ 2{{r}^{2}}-{{r}^{2}} \right]
2ux2+2uy2=f(r)+f(r)r3.r2\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)+\dfrac{{{f}^{'}}\left( r \right)}{{{r}^{3}}}.{{r}^{2}}
2ux2+2uy2=f(r)+f(r)r\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)+\dfrac{{{f}^{'}}\left( r \right)}{r}
Hence, the option (c) is the right answer.

Note: While solving the question, we have assumed that the function U is differentiable two times with respect to x1,{{x}_{1}}, r and y, i.e. the double differentiation of U with respect to x and y exists. Another thing to remember is that while differentiating partially, we take all the remaining variables as constant as long as there is no relation given between them.