Solveeit Logo

Question

Question: If u = cot<sup>–1</sup> \(\sqrt { \tan \alpha }\) – tan<sup>–1</sup> \(\sqrt { \tan \alpha }\) , the...

If u = cot–1 tanα\sqrt { \tan \alpha } – tan–1 tanα\sqrt { \tan \alpha } , then tan (π4μ2)\left( \frac { \pi } { 4 } - \frac { \mu } { 2 } \right)is equal

to–

A

tanα\sqrt { \tan \alpha }

B

cotα\sqrt { \cot \alpha }

C

tan a

D

cot a

Answer

tanα\sqrt { \tan \alpha }

Explanation

Solution

Let tanα\sqrt { \tan \alpha } = tan x, then u = cot–1(tan x) – tan–1

(tan x) = π2\frac { \pi } { 2 }xx = π2\frac { \pi } { 2 } – 2x

Ž 2x = π2\frac { \pi } { 2 } – u Ž x = π4\frac { \pi } { 4 } Ž tan x = tan

Ž tanα\sqrt { \tan \alpha }= tan .