Solveeit Logo

Question

Question: If u = a – b and v = a + b and |a| = |b| = 2, then \[\left| u\times v \right|\] is equal to (Note: a...

If u = a – b and v = a + b and |a| = |b| = 2, then u×v\left| u\times v \right| is equal to (Note: a and b are vectors).
(a)216(a.b)2\left( a \right)2\sqrt{16-{{\left( a.b \right)}^{2}}}
(b)16(a.b)2\left( b \right)\sqrt{16-{{\left( a.b \right)}^{2}}}
(c)24(a.b)2\left( c \right)2\sqrt{4-{{\left( a.b \right)}^{2}}}
(d)24+(a.b)2\left( d \right)2\sqrt{4+{{\left( a.b \right)}^{2}}}

Explanation

Solution

To solve this we will first try to calculate the value of u×v\left| u\times v \right| in terms of a and b. For that we will substitute u = a – b and v = a + b and solve using the formula, a×b2+(a.b)2=(absinθ)2+(abcosθ)2{{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{\left( ab\sin \theta \right)}^{2}}+{{\left( ab\cos \theta \right)}^{2}} and sin2θ+cos2θ=1.{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. Finally, we will use a=b=2\left| a \right|=\left| b \right|=2 to get the result.

Complete step-by-step answer:
We are given that, u = a – b and v = a + b and |a| = 2 and |b| = 2. Then to find the value of u×v\left| u\times v \right| we have u = a – b and v = a + b.
u×v=(ab)×(a+b)\Rightarrow \left| u\times v \right|=\left| \left( a-b \right)\times \left( a+b \right) \right|
Now, any vector cross product with itself is 0.
a×a=0;b×b=0\Rightarrow a\times a=0;b\times b=0
u×v=2a×b.....(i)\Rightarrow \left| u\times v \right|=2\left| a\times b \right|.....\left( i \right)
Now, we have a formula relating a×b2{{\left| a\times b \right|}^{2}} and (a.b)2{{\left( a.b \right)}^{2}} with sinθ\sin \theta and cosθ.\cos \theta . It is given as,
a×b2+(a.b)2=(absinθ)2+(abcosθ)2{{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{\left( ab\sin \theta \right)}^{2}}+{{\left( ab\cos \theta \right)}^{2}}
a×b2+(a.b)2=a2b2(sin2θ+cos2θ)\Rightarrow {{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{a}^{2}}{{b}^{2}}\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)
As, sin2θ+cos2θ=1.{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.
a×b2+(a.b)2=a2b2×1\Rightarrow {{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{a}^{2}}{{b}^{2}}\times 1
a×b2+(a.b)2=a2b2\Rightarrow {{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{a}^{2}}{{b}^{2}}
a×b2=a2b2(a.b)2\Rightarrow {{\left| a\times b \right|}^{2}}={{a}^{2}}{{b}^{2}}-{{\left( a.b \right)}^{2}}
a×b2=a2b2(a.b)2.....(ii)\Rightarrow {{\left| a\times b \right|}^{2}}=\sqrt{{{a}^{2}}{{b}^{2}}-{{\left( a.b \right)}^{2}}}.....\left( ii \right)
Now, let us substitute the value obtained in equation (i) in equation (ii).
u×v=2a×b\Rightarrow \left| u\times v \right|=2\left| a\times b \right|
u×v=2a2b2(ab)2\Rightarrow \left| u\times v \right|=2\sqrt{{{a}^{2}}{{b}^{2}}-{{\left( ab \right)}^{2}}}
Now, as a=b=2,\left| a \right|=\left| b \right|=2,
a2=22{{a}^{2}}={{2}^{2}}
b2=b2=b2\left| {{b}^{2}} \right|={{\left| b \right|}^{2}}={{b}^{2}}
b2=22{{b}^{2}}={{2}^{2}}
Substituting these values in the above equation, we get,
u×v=22222(a.b)2\Rightarrow \left| u\times v \right|=2\sqrt{{{2}^{2}}{{2}^{2}}-{{\left( a.b \right)}^{2}}}
Hence, the value of u×v=216(a.b)2.\left| u\times v \right|=2\sqrt{16-{{\left( a.b \right)}^{2}}}.

So, the correct answer is “Option a”.

Note: The point of confusion can be using (a) = 2 in place of |a| = 2. This is correct as a2=a2{{\left| a \right|}^{2}}={{a}^{2}} as ‘a’ be any value positive or negative, a2{{a}^{2}} always will be positive a2=a2\Rightarrow {{\left| a \right|}^{2}}={{a}^{2}} as a0,\left| a \right|\ge 0, ‘a’ be any value. The point is we cannot use a = 2 directly. We need to use a2=22{{a}^{2}}={{2}^{2}} but not a = 2, as |a| = 2, ‘a’ can be negative 2 or positive as well.