Solveeit Logo

Question

Mathematics Question on Conic sections

If two vertices of an equilateral triangle are A(a,0)A (- a, 0) and B(a,0),a>0B (a, 0), a > 0, and the third vertex CC lies above x-axis then the equation of the circumcircle of ΔABC\Delta ABC is :

A

3x2+3y223ay=3a23x^{2}+3y^{2}-2\sqrt{3}ay=3a^{2}

B

3x2+3y22ay=3a23x^{2}+3y^{2}-2ay=3a^{2}

C

x2+y22ay=a2x^{2}+y^{2}-2ay=a^{2}

D

x2+y23ay=a2x^{2}+y^{2}-\sqrt{3}ay=a^{2}

Answer

3x2+3y223ay=3a23x^{2}+3y^{2}-2\sqrt{3}ay=3a^{2}

Explanation

Solution

Let C=(x,y)C = (x, y)
Now, CA2=CB2=AB2CA^2 = CB^2=AB^2
(x+a)2+y2=(xa)2+y2=(2a)2\Rightarrow \left(x + a\right)^{2}+y^{2} = \left(x- a\right)^{2}+y^{2} = \left(2a\right)^{2}
x2+2ax+a2+y2=4a2...(i)\Rightarrow x^{2} + 2ax + a^{2}+y^{2} = 4a^{2}\,...\left(i\right)
and x22ax+a2+y2=4a2...(ii)x^{2} - 2ax + a^{2} +y^{2} = 4a^{2}\,...\left(ii\right)
From (i)\left(i\right) and (ii),x=0\left(ii\right), x = 0 and y=±3ay=\pm\sqrt{3}a
Since point C(x,y)C\left(x, y\right) lies above the x-axis and a>0a > 0, hence y=3ay=\sqrt{3}a
C=(0,3a)\therefore C=\left(0, \sqrt{3}a\right)
Let the equation of circumcircle be
x2+y2+2gx+2fy+C=0x^2 +y^2 + 2gx + 2fy + C = 0
Since points A(a,0),B(a,0)A\left(- a, 0\right), B\left(a, 0\right) and C(0,3a)C\left(0, \sqrt{3}a\right) lie on the circle, therefore
a22ga+C=0...(iii)a^{2} - 2ga + C = 0\,...\left(iii\right)
a2+2ga+C=0...(iv)a^{2} + 2ga + C = 0\,...\left(iv\right)
and 3a2+23af+C=0...(v)3a^{2}+2\sqrt{3}af+C=0\,...\left(v\right)
From (iii),(iv)\left(iii\right), \left(iv\right), and (v)\left(v\right)
g=0,c=a2,f=a3g=0, c=-a^{2}, f =-\frac{a}{\sqrt{3}}
Hence equation of the circumcircle is
x2+y22a3ya2=0x^{2}+y^{2}-\frac{2a}{\sqrt{3}}y-a^{2}=0
x2+y223ay3a2=0\Rightarrow x^{2}+y^{2}-\frac{2\sqrt{3}ay}{3}-a^{2}=0
322+3y223ay=3a2\Rightarrow 3^{2}2 + 3y^{2}-2\sqrt{3}ay = 3 a^{2}