Solveeit Logo

Question

Physics Question on Motion in a plane

If two vectors A\vec{A} and B\vec{B} having equal magnitude RR are inclined at an angle θ\theta, then

A

AB=2Rsin(θ2)|\vec{A} - \vec{B}| = \sqrt{2} R \sin \left(\frac{\theta}{2}\right)

B

A+B=2Rsin(θ2)|\vec{A} + \vec{B}| = 2 R \sin \left(\frac{\theta}{2}\right)

C

A+B=2Rcos(θ2)|\vec{A} + \vec{B}| = 2 R \cos \left(\frac{\theta}{2}\right)

D

AB=2Rcos(θ2)|\vec{A} - \vec{B}| = 2 R \cos \left(\frac{\theta}{2}\right)

Answer

A+B=2Rcos(θ2)|\vec{A} + \vec{B}| = 2 R \cos \left(\frac{\theta}{2}\right)

Explanation

Solution

The magnitude of the resultant vector RR' of two vectors AA and BB inclined at an angle θ\theta is given by:

R=a2+b2+2abcosθ.R' = \sqrt{a^2 + b^2 + 2ab \cos \theta}.

Here a=b=Ra = b = R, so:

R=R2+R2+2RRcosθ=2R2(1+cosθ).R' = \sqrt{R^2 + R^2 + 2R \cdot R \cos \theta} = \sqrt{2R^2 (1 + \cos \theta)}.

Using the identity 1+cosθ=2cos2(θ2)1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right), we get:

R=2R22cos2(θ2)=2Rcos(θ2).R' = \sqrt{2R^2 \cdot 2 \cos^2 \left(\frac{\theta}{2}\right)} = 2R \cos \left(\frac{\theta}{2}\right).

Thus, the answer is:

A+B=2Rcos(θ2).|A + B| = 2R \cos \left(\frac{\theta}{2}\right).