Solveeit Logo

Question

Question: If two vectors a and b are perpendicular. If a magnitude 8 and b has magnitude 3 what is \(\left| {a...

If two vectors a and b are perpendicular. If a magnitude 8 and b has magnitude 3 what is a2b\left| {a - 2b} \right|?

Explanation

Solution

To find the value of a2b\left| {\overrightarrow a - 2\overrightarrow b } \right|, calculate the value a2b2{\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} of and take square root of that value.
How you can find the value of a2b2{\left| {\overrightarrow a - 2\overrightarrow b } \right|^2}i.e.
a2b2=(a2b)(a2b)\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \left( {\overrightarrow a - 2\overrightarrow b } \right)\left( {\overrightarrow a - 2\overrightarrow b } \right)

Complete step by step solution: 1) Let us see what is given in the question, we have given the value of a&b|\overrightarrow a |\& |\overrightarrow b |as follows
a=8\Rightarrow |\overrightarrow a | = 8 and
b=3\Rightarrow |\overrightarrow b | = 3
2) First of all, find the value of a2b2{\left| {\overrightarrow a - 2\overrightarrow b } \right|^2}i.e.
a2b2=(a2b)(a2b)\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \left( {\overrightarrow a - 2\overrightarrow b } \right)\left( {\overrightarrow a - 2\overrightarrow b } \right)
a2b2=a(a2b)2b(a2b) a2b2=a.aa.2b2b.a2b.2b \begin{gathered} \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \overrightarrow a \left( {\overrightarrow a - 2\overrightarrow b } \right) - 2\overrightarrow b \left( {\overrightarrow a - 2\overrightarrow b } \right) \\\ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \overrightarrow a .\overrightarrow a - \overrightarrow a .2\overrightarrow b - 2\overrightarrow b .\overrightarrow a - 2\overrightarrow b .2\overrightarrow b \\\ \end{gathered}
a2b2=a.a2a..b2a.b4bb\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \overrightarrow a .\overrightarrow a - 2\overrightarrow a ..\overrightarrow b - 2\overrightarrow a .\overrightarrow b - 4\overrightarrow b \overrightarrow b (as a.2b=2.ba=2ab\Rightarrow \overrightarrow a .2\overrightarrow b = 2.\overrightarrow b \overrightarrow a = 2\overrightarrow a \overrightarrow b)
a2b2=a24a.b4b2\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {\overrightarrow {\left| a \right|} ^2} - 4\overrightarrow a .\overrightarrow b - 4{\overrightarrow {\left| b \right|} ^2} …….(1)
3) Now, we have to find the value of a.b\overrightarrow a .\overrightarrow b as given below
The dot product of a and b is given by
4) a.b=abcosθ\Rightarrow \overrightarrow a .\overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \theta, where θ\theta is the angle between a and b. we have given that a and b are perpendicular. Therefore, θ=90\theta = {90^ \circ }and cos90=0\cos {90^ \circ } = 0
a.b=0\Rightarrow \overrightarrow a .\overrightarrow b = 0
5) Put the values of a,b&a.b\overrightarrow a ,\overrightarrow b \& \overrightarrow a .\overrightarrow b in equation (1) we get,
a2b2=a24a.b4b2\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {\overrightarrow {\left| a \right|} ^2} - 4\overrightarrow a .\overrightarrow b - 4{\overrightarrow {\left| b \right|} ^2}
a2b2=824(0)4×32 a2b2=644×9=6436 a2b2=28 \begin{gathered} \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {8^2} - 4(0) - 4 \times {3^2} \\\ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = 64 - 4 \times 9 = 64 - 36 \\\ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = 28 \\\ \end{gathered}
Taking square root on both sides we get,
a2b=28=27\Rightarrow \left| {\overrightarrow a - 2\overrightarrow b } \right| = \sqrt {28} = 2\sqrt 7

Therefore, the value of a2b\left| {\overrightarrow a - 2\overrightarrow b } \right| is 272\sqrt 7 .

Note: Types of vectors are given as follows:

  1. Zero or Null Vector: When starting and ending points of a vector are same is called zero or null vector.
  2. Unit Vector: If the magnitude of a vector is unity then the vector is called a unit vector.
  3. Free Vectors: When the initial point of a vector is not defined then those types of vectors are said to be free vectors.
  4. Negative of a Vector: A vector is said to be a negative vector if the magnitude of a vector is the same as the given vector but the direction is opposite to it.
  5. Like and Unlike Vectors: Unlike vectors are the vectors whose direction is opposite to each other but the direction of both is same in like vectors.