Solveeit Logo

Question

Question: If two spheres of radii \(r_{1}\) and \(r_{2}\) cut orthogonally, then the radius of the common circ...

If two spheres of radii r1r_{1} and r2r_{2} cut orthogonally, then the radius of the common circle is

A

r1r2r_{1}r_{2}

B

(r12+r22)\sqrt{(r_{1}^{2} + r_{2}^{2}})

C

r1r2(r12+r22)r_{1}r_{2}\sqrt{(r_{1}^{2} + r_{2}^{2})}

D

r1r2(r12+r22)\frac{r_{1}r_{2}}{\sqrt{(r_{1}^{2} + r_{2}^{2})}}

Answer

r1r2(r12+r22)\frac{r_{1}r_{2}}{\sqrt{(r_{1}^{2} + r_{2}^{2})}}

Explanation

Solution

In OPC\triangle O P C, cosθ=rr1\cos \theta = \frac { r } { r _ { 1 } }

In , sinθ=rr2\sin \theta = \frac { r } { r _ { 2 } }

As, cos2θ+sin2θ=1\cos ^ { 2 } \theta + \sin ^ { 2 } \theta = 1

(rr1)2+(rr2)2=1\left( \frac { r } { r _ { 1 } } \right) ^ { 2 } + \left( \frac { r } { r _ { 2 } } \right) ^ { 2 } = 1r=r1r2r12+r22r = \frac { r _ { 1 } r _ { 2 } } { \sqrt { r _ { 1 } ^ { 2 } + r _ { 2 } ^ { 2 } } } .