Solveeit Logo

Question

Question: If two sides of a triangle are \(\frac { 1 } { \sqrt { 6 } - \sqrt { 2 } }\)and \(\frac { 1 } { \sqr...

If two sides of a triangle are 162\frac { 1 } { \sqrt { 6 } - \sqrt { 2 } }and 16+2\frac { 1 } { \sqrt { 6 } + \sqrt { 2 } }, and

the included angle is 600, then the third side is

A

3\sqrt { 3 }

B

32\frac { \sqrt { 3 } } { 2 }

C

13\frac { 1 } { \sqrt { 3 } }

D

232 \sqrt { 3 }

Answer

32\frac { \sqrt { 3 } } { 2 }

Explanation

Solution

If a represents the third side then

cos60=(162)2+(16+2)2a22×16+2×162\cos 60 ^ { \circ } = \frac { \left( \frac { 1 } { \sqrt { 6 } - \sqrt { 2 } } \right) ^ { 2 } + \left( \frac { 1 } { \sqrt { 6 } + \sqrt { 2 } } \right) ^ { 2 } - a ^ { 2 } } { 2 \times \frac { 1 } { \sqrt { 6 } + \sqrt { 2 } } \times \frac { 1 } { \sqrt { 6 } - \sqrt { 2 } } }

12=2(6+2)a2(62)22(62)\frac { 1 } { 2 } = \frac { 2 ( 6 + 2 ) - \mathrm { a } ^ { 2 } ( 6 - 2 ) ^ { 2 } } { 2 ( 6 - 2 ) }