Solveeit Logo

Question

Question: If two sides of a triangle are \(2 \sqrt { 3 }\) and \(2 \sqrt { 2 }\) the angle opposite the short...

If two sides of a triangle are 232 \sqrt { 3 } and 222 \sqrt { 2 } the angle

opposite the shorter side is 4545 ^ { \circ }. The maximum value of the

third side is

A

2+62 + \sqrt { 6 }

B

2+6\sqrt { 2 } + \sqrt { 6 }

C

62\sqrt { 6 } - 2

D

None of these

Answer

2+6\sqrt { 2 } + \sqrt { 6 }

Explanation

Solution

Let a=23,b=22a = 2 \sqrt { 3 } , b = 2 \sqrt { 2 } B=45\therefore B = 45 ^ { \circ }

\therefore asinA=bsinB=csinC\frac { a } { \sin A } = \frac { b } { \sin B } = \frac { c } { \sin C }23sinA=22sin45=csinC\frac { 2 \sqrt { 3 } } { \sin A } = \frac { 2 \sqrt { 2 } } { \sin 45 ^ { \circ } } = \frac { c } { \sin C } ......(i)

\therefore sinA=32\sin A = \frac { \sqrt { 3 } } { 2 }A=60A = 60 ^ { \circ }.

\therefore C=180AB=75C = 180 ^ { \circ } - A - B = 75 ^ { \circ }

From (i) c=4sinC=4sin(45+30)c = 4 \sin C = 4 \sin \left( 45 ^ { \circ } + 30 ^ { \circ } \right) = 2+6\sqrt { 2 } + \sqrt { 6 }.