Solveeit Logo

Question

Physics Question on laws of motion

If two molecules of AA and BB having mass 100kg100 \,kg and 64kg64\, kg and rate of diffusion of AA is 12×103,12\times 10^{-3}, then what will be the rate of diffusion of BB?

A

15×10315\times {{10}^{-3}}

B

64×10364\times {{10}^{-3}}

C

 5×103~5\times {{10}^{-3}}

D

 46×103~46\times {{10}^{-3}}

Answer

15×10315\times {{10}^{-3}}

Explanation

Solution

According to Grahams law of diffusion At constant pressure and temperature, the rate of diffusion of a gas is inversely proportional to the square root of its vapour density. Rate of diffusion (r)1d(r) \propto \frac{1}{\sqrt{d}} Molecular weight (M)=2×(M)=2 \times vapour density r1r2=M2M1\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}} mA=(1002)kg/m_{A}=\left(\frac{100}{2}\right) \,kg / molecule mB=(642)kg/m_{B}=\left(\frac{64}{2}\right) \,kg / molecule rA=12×103r_{A}=12 \times 10^{-3} and rB=?r_{B}=? rArB=dBdA=MBMA\frac{r_{A}}{r_{B}}=\sqrt{\frac{d_{B}}{d_{A}}}=\sqrt{\frac{M_{B}}{M_{A}}} 12×103rB=64/2100/2=64100=810\frac{12 \times 10^{-3}}{r_{B}}=\sqrt{\frac{64 / 2}{100 / 2}}=\sqrt{\frac{64}{100}}=\frac{8}{10} rB=12×103×108r_{B}=\frac{12 \times 10^{-3} \times 10}{8} =15×103=15 \times 10^{-3}