Solveeit Logo

Question

Question: If two events A and B are such that P(![](https://cdn.pureessence.tech/canvas_268.png?top_left_x=148...

If two events A and B are such that P() = 0.3 P(2) = 0.4

and P(A Ē B\overline { \mathrm { B } } ) = 0.5 then P (BABˉ)\left( \frac { B } { A \cup \bar { B } } \right) =

Each of the following questions contains two statements; statement-1 and statement-2. Each of these question have four alternative choices, only one of which is correct answer. You have to select the correct choice

A

0.9

B

0.5

C

0.6

D

0.25

Answer

0.25

Explanation

Solution

P= P[B(AB)]P(AB)\frac { \mathrm { P } [ \mathrm { B } \cap ( \mathrm { A } \cup \overline { \mathrm { B } } ) ] } { \mathrm { P } ( \mathrm { A } \cup \overline { \mathrm { B } } ) }

=

{P(AB)=0.5P(A)P(AB)=0.5P(AB)=0.70.5=0.2\left\{ \begin{array} { l } \mathrm { P } ( \mathrm { A } \cap \overline { \mathrm { B } } ) = 0.5 \\ \mathrm { P } ( \mathrm { A } ) - \mathrm { P } ( \mathrm { A } \cap \mathrm { B } ) = 0.5 \\ \mathrm { P } ( \mathrm { A } \cap \mathrm { B } ) = 0.7 - 0.5 = 0.2 \end{array} \right.

= P(AB)P(A)+P(B)P(AB)\frac { \mathrm { P } ( \mathrm { A } \cap \mathrm { B } ) } { \mathrm { P } ( \mathrm { A } ) + \mathrm { P } ( \overline { \mathrm { B } } ) - \mathrm { P } ( \mathrm { A } \cap \overline { \mathrm { B } } ) } = 0.20.7+0.60.5\frac { 0.2 } { 0.7 + 0.6 - 0.5 }

= 0.20.8\frac { 0.2 } { 0.8 } = 14\frac { 1 } { 4 } = 0.25