Solveeit Logo

Question

Question: If two events A and B are such that P(A<sup>C</sup>) = 0.3, P(2) = 0.4 and P(AB<sup>C</sup>) = 0.5 ...

If two events A and B are such that P(AC) = 0.3, P(2) = 0.4

and P(ABC) = 0.5 then P[B/(A Č BC)] is equal to-

A

14\frac { 1 } { 4 }

B

12\frac { 1 } { 2 }

C

34\frac { 3 } { 4 }

D

23\frac { 2 } { 3 }

Answer

14\frac { 1 } { 4 }

Explanation

Solution

P(AC) = 0.3 Ž P(1) = 0.7

P(2) = 0.4 Ž P(BC) = 0.6

P(ABC) = 0.5 Ž P(1) –P (AB) = 0.5

or, P(AB) = 0.7 – 0.5 = 0.2

P [B/(A Ē BC)] = P[B(ABC)]P(ABC)\frac { \mathrm { P } \left[ \mathrm { B } \cap \left( \mathrm { A } \cup \mathrm { B } ^ { \mathrm { C } } \right) \right] } { \mathrm { P } \left( \mathrm { A } \cup \mathrm { B } ^ { \mathrm { C } } \right) } …(1)

Now, B Ē (A Č BC) = A Ē B

\ P [B Ē (A Č BC)] = P(A Ē B) = 0.2 …(2)

and P (A Č BC) = P (1) + P(BC) –P (A Ē BC)

= 0.7 + 0.6 – 0.5 = 0.8 …(3)

From (1), (2) and (3)

Required probability = 14\frac { 1 } { 4 }